1ZLACON(1)           LAPACK auxiliary routine (version 3.1)           ZLACON(1)
2
3
4

NAME

6       ZLACON - the 1-norm of a square, complex matrix A
7

SYNOPSIS

9       SUBROUTINE ZLACON( N, V, X, EST, KASE )
10
11           INTEGER        KASE, N
12
13           DOUBLE         PRECISION EST
14
15           COMPLEX*16     V( N ), X( N )
16

PURPOSE

18       ZLACON  estimates  the  1-norm  of a square, complex matrix A.  Reverse
19       communication is used for evaluating matrix-vector products.
20
21

ARGUMENTS

23       N      (input) INTEGER
24              The order of the matrix.  N >= 1.
25
26       V      (workspace) COMPLEX*16 array, dimension (N)
27              On the final return, V = A*W,  where  EST =  norm(V)/norm(W)  (W
28              is not returned).
29
30       X      (input/output) COMPLEX*16 array, dimension (N)
31              On  an  intermediate  return,  X should be overwritten by A * X,
32              if KASE=1, A' * X,  if KASE=2, where A' is the conjugate  trans‐
33              pose  of  A,  and  ZLACON  must  be re-called with all the other
34              parameters unchanged.
35
36       EST    (input/output) DOUBLE PRECISION
37              On entry with KASE = 1  or  2  and  JUMP  =  3,  EST  should  be
38              unchanged  from the previous call to ZLACON.  On exit, EST is an
39              estimate (a lower bound) for norm(A).
40
41       KASE   (input/output) INTEGER
42              On the initial call to ZLACON, KASE should be 0.  On an interme‐
43              diate  return,  KASE will be 1 or 2, indicating whether X should
44              be overwritten by A * X  or A' * X.  On the  final  return  from
45              ZLACON, KASE will again be 0.
46

FURTHER DETAILS

48       Contributed by Nick Higham, University of Manchester.
49       Originally named CONEST, dated March 16, 1988.
50
51       Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of a
52       real or complex matrix, with applications to condition estimation", ACM
53       Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
54
55       Last modified:  April, 1999
56
57
58
59
60 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       ZLACON(1)
Impressum