1ZLAED0(1)                LAPACK routine (version 3.1)                ZLAED0(1)
2
3
4

NAME

6       ZLAED0  - divide and conquer method, ZLAED0 computes all eigenvalues of
7       a symmetric tridiagonal matrix which is one  diagonal  block  of  those
8       from reducing a dense or band Hermitian matrix and corresponding eigen‐
9       vectors of the dense or band matrix
10

SYNOPSIS

12       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS,  RWORK,  IWORK,
13                          INFO )
14
15           INTEGER        INFO, LDQ, LDQS, N, QSIZ
16
17           INTEGER        IWORK( * )
18
19           DOUBLE         PRECISION D( * ), E( * ), RWORK( * )
20
21           COMPLEX*16     Q( LDQ, * ), QSTORE( LDQS, * )
22

PURPOSE

24       Using the divide and conquer method, ZLAED0 computes all eigenvalues of
25       a symmetric tridiagonal matrix which is one  diagonal  block  of  those
26       from reducing a dense or band Hermitian matrix and corresponding eigen‐
27       vectors of the dense or band matrix.
28
29

ARGUMENTS

31       QSIZ   (input) INTEGER
32              The dimension of the unitary matrix  used  to  reduce  the  full
33              matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
34
35       N      (input) INTEGER
36              The dimension of the symmetric tridiagonal matrix.  N >= 0.
37
38       D      (input/output) DOUBLE PRECISION array, dimension (N)
39              On  entry,  the diagonal elements of the tridiagonal matrix.  On
40              exit, the eigenvalues in ascending order.
41
42       E      (input/output) DOUBLE PRECISION array, dimension (N-1)
43              On entry, the off-diagonal elements of the  tridiagonal  matrix.
44              On exit, E has been destroyed.
45
46       Q      (input/output) COMPLEX*16 array, dimension (LDQ,N)
47              On  entry,  Q must contain an QSIZ x N matrix whose columns uni‐
48              tarily orthonormal. It is a part  of  the  unitary  matrix  that
49              reduces the full dense Hermitian matrix to a (reducible) symmet‐
50              ric tridiagonal matrix.
51
52       LDQ    (input) INTEGER
53              The leading dimension of the array Q.  LDQ >= max(1,N).
54
55       IWORK  (workspace) INTEGER array,
56              the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg(
57              N ) = smallest integer k such that 2^k >= N )
58
59       RWORK  (workspace) DOUBLE PRECISION array,
60              dimension  (1  +  3*N  + 2*N*lg N + 3*N**2) ( lg( N ) = smallest
61              integer k such that 2^k >= N )
62
63              QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to
64              store  parts  of the eigenvector matrix when the updating matrix
65              multiplies take place.
66
67       LDQS   (input) INTEGER
68              The leading dimension of the array QSTORE.  LDQS >= max(1,N).
69
70       INFO   (output) INTEGER
71              = 0:  successful exit.
72              < 0:  if INFO = -i, the i-th argument had an illegal value.
73              > 0:  The algorithm failed to compute an eigenvalue while  work‐
74              ing  on  the  submatrix  lying  in  rows  and columns INFO/(N+1)
75              through mod(INFO,N+1).
76
77
78
79 LAPACK routine (version 3.1)    November 2006                       ZLAED0(1)
Impressum