1ZLAIC1(1) LAPACK auxiliary routine (version 3.1) ZLAIC1(1)
2
3
4
6 ZLAIC1 - one step of incremental condition estimation in its simplest
7 version
8
10 SUBROUTINE ZLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
11
12 INTEGER J, JOB
13
14 DOUBLE PRECISION SEST, SESTPR
15
16 COMPLEX*16 C, GAMMA, S
17
18 COMPLEX*16 W( J ), X( J )
19
21 ZLAIC1 applies one step of incremental condition estimation in its sim‐
22 plest version:
23
24 Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
25 lower triangular matrix L, such that
26 twonorm(L*x) = sest
27 Then ZLAIC1 computes sestpr, s, c such that
28 the vector
29 [ s*x ]
30 xhat = [ c ]
31 is an approximate singular vector of
32 [ L 0 ]
33 Lhat = [ w' gamma ]
34 in the sense that
35 twonorm(Lhat*xhat) = sestpr.
36
37 Depending on JOB, an estimate for the largest or smallest singular
38 value is computed.
39
40 Note that [s c]' and sestpr**2 is an eigenpair of the system
41
42 diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
43 [ conjg(gamma) ]
44
45 where alpha = conjg(x)'*w.
46
47
49 JOB (input) INTEGER
50 = 1: an estimate for the largest singular value is computed.
51 = 2: an estimate for the smallest singular value is computed.
52
53 J (input) INTEGER
54 Length of X and W
55
56 X (input) COMPLEX*16 array, dimension (J)
57 The j-vector x.
58
59 SEST (input) DOUBLE PRECISION
60 Estimated singular value of j by j matrix L
61
62 W (input) COMPLEX*16 array, dimension (J)
63 The j-vector w.
64
65 GAMMA (input) COMPLEX*16
66 The diagonal element gamma.
67
68 SESTPR (output) DOUBLE PRECISION
69 Estimated singular value of (j+1) by (j+1) matrix Lhat.
70
71 S (output) COMPLEX*16
72 Sine needed in forming xhat.
73
74 C (output) COMPLEX*16
75 Cosine needed in forming xhat.
76
77
78
79 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 ZLAIC1(1)