1ZLARFX(1)           LAPACK auxiliary routine (version 3.1)           ZLARFX(1)
2
3
4

NAME

6       ZLARFX - a complex elementary reflector H to a complex m by n matrix C,
7       from either the left or the right
8

SYNOPSIS

10       SUBROUTINE ZLARFX( SIDE, M, N, V, TAU, C, LDC, WORK )
11
12           CHARACTER      SIDE
13
14           INTEGER        LDC, M, N
15
16           COMPLEX*16     TAU
17
18           COMPLEX*16     C( LDC, * ), V( * ), WORK( * )
19

PURPOSE

21       ZLARFX applies a complex elementary reflector H to a  complex  m  by  n
22       matrix  C,  from  either the left or the right. H is represented in the
23       form
24
25             H = I - tau * v * v'
26
27       where tau is a complex scalar and v is a complex vector.
28
29       If tau = 0, then H is taken to be the unit matrix
30
31       This version uses inline code if H has order < 11.
32
33

ARGUMENTS

35       SIDE    (input) CHARACTER*1
36               = 'L': form  H * C
37               = 'R': form  C * H
38
39       M       (input) INTEGER
40               The number of rows of the matrix C.
41
42       N       (input) INTEGER
43               The number of columns of the matrix C.
44
45       V       (input) COMPLEX*16 array, dimension (M) if SIDE = 'L'
46               or (N) if SIDE = 'R' The vector v in the representation of H.
47
48       TAU     (input) COMPLEX*16
49               The value tau in the representation of H.
50
51       C       (input/output) COMPLEX*16 array, dimension (LDC,N)
52               On entry, the m by n matrix C.  On exit, C  is  overwritten  by
53               the matrix H * C if SIDE = 'L', or C * H if SIDE = 'R'.
54
55       LDC     (input) INTEGER
56               The leading dimension of the array C. LDA >= max(1,M).
57
58       WORK    (workspace) COMPLEX*16 array, dimension (N) if SIDE = 'L'
59               or  (M)  if  SIDE = 'R' WORK is not referenced if H has order <
60               11.
61
62
63
64 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       ZLARFX(1)
Impressum