1ZROT(1) LAPACK auxiliary routine (version 3.1) ZROT(1)
2
3
4
6 ZROT - a plane rotation, where the cos (C) is real and the sin (S) is
7 complex, and the vectors CX and CY are complex
8
10 SUBROUTINE ZROT( N, CX, INCX, CY, INCY, C, S )
11
12 INTEGER INCX, INCY, N
13
14 DOUBLE PRECISION C
15
16 COMPLEX*16 S
17
18 COMPLEX*16 CX( * ), CY( * )
19
21 ZROT applies a plane rotation, where the cos (C) is real and the sin
22 (S) is complex, and the vectors CX and CY are complex.
23
24
26 N (input) INTEGER
27 The number of elements in the vectors CX and CY.
28
29 CX (input/output) COMPLEX*16 array, dimension (N)
30 On input, the vector X. On output, CX is overwritten with C*X
31 + S*Y.
32
33 INCX (input) INTEGER
34 The increment between successive values of CY. INCX <> 0.
35
36 CY (input/output) COMPLEX*16 array, dimension (N)
37 On input, the vector Y. On output, CY is overwritten with
38 -CONJG(S)*X + C*Y.
39
40 INCY (input) INTEGER
41 The increment between successive values of CY. INCX <> 0.
42
43 C (input) DOUBLE PRECISION
44 S (input) COMPLEX*16 C and S define a rotation [ C
45 S ] [ -conjg(S) C ] where C*C + S*CONJG(S) = 1.0.
46
47
48
49 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 ZROT(1)