1ZTZRQF(1)                LAPACK routine (version 3.1)                ZTZRQF(1)
2
3
4

NAME

6       ZTZRQF - i deprecated and has been replaced by routine ZTZRZF
7

SYNOPSIS

9       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
10
11           INTEGER        INFO, LDA, M, N
12
13           COMPLEX*16     A( LDA, * ), TAU( * )
14

PURPOSE

16       This routine is deprecated and has been replaced by routine ZTZRZF.
17
18       ZTZRQF  reduces  the M-by-N ( M<=N ) complex upper trapezoidal matrix A
19       to upper triangular form by means of unitary transformations.
20
21       The upper trapezoidal matrix A is factored as
22
23          A = ( R  0 ) * Z,
24
25       where Z is an N-by-N unitary matrix and R is an M-by-M upper triangular
26       matrix.
27
28

ARGUMENTS

30       M       (input) INTEGER
31               The number of rows of the matrix A.  M >= 0.
32
33       N       (input) INTEGER
34               The number of columns of the matrix A.  N >= M.
35
36       A       (input/output) COMPLEX*16 array, dimension (LDA,N)
37               On  entry,  the  leading  M-by-N  upper trapezoidal part of the
38               array A must contain the matrix to be factorized.  On exit, the
39               leading  M-by-M  upper  triangular part of A contains the upper
40               triangular matrix R, and elements M+1 to N of the first M  rows
41               of  A,  with the array TAU, represent the unitary matrix Z as a
42               product of M elementary reflectors.
43
44       LDA     (input) INTEGER
45               The leading dimension of the array A.  LDA >= max(1,M).
46
47       TAU     (output) COMPLEX*16 array, dimension (M)
48               The scalar factors of the elementary reflectors.
49
50       INFO    (output) INTEGER
51               = 0: successful exit
52               < 0: if INFO = -i, the i-th argument had an illegal value
53

FURTHER DETAILS

55       The  factorization is obtained by Householder's method.  The kth trans‐
56       formation  matrix,  Z( k ), whose conjugate transpose is used to intro‐
57       duce zeros into the (m - k + 1)th row of A, is given in the form
58
59          Z( k ) = ( I     0   ),
60                   ( 0  T( k ) )
61
62       where
63
64          T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
65                                                      (   0    )
66                                                      ( z( k ) )
67
68       tau is a scalar and z( k ) is an ( n - m ) element vector.  tau and  z(
69       k ) are chosen to annihilate the elements of the kth row of X.
70
71       The  scalar tau is returned in the kth element of TAU and the vector u(
72       k ) in the kth row of A, such that the elements of z( k ) are in  a( k,
73       m  +  1  ), ..., a( k, n ). The elements of R are returned in the upper
74       triangular part of A.
75
76       Z is given by
77
78          Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
79
80
81
82
83 LAPACK routine (version 3.1)    November 2006                       ZTZRQF(1)
Impressum