1regalgebra(n)                 SAORD Documentation                regalgebra(n)
2
3
4

NAME

6       RegAlgebra: Boolean Algebra on Spatial Regions
7

SYNOPSIS

9       This document describes the boolean arithmetic defined for region
10       expressions.
11

DESCRIPTION

13       When defining a region, several shapes can be  combined using boolean
14       operations.  The boolean operators are (in order of precedence):
15
16         Symbol        Operator                Associativity
17         ------        --------                -------------
18         !             not                     right to left
19         &             and                     left to right
20         ^             exclusive or            left to right
21         ⎪             inclusive or            left to right
22
23       For example,  to  create a mask  consisting  of a large  circle with a
24       smaller  box   removed,  one  can  use   the   and and not operators:
25
26         CIRCLE(11,11,15) & !BOX(11,11,3,6)
27
28       and the resulting mask is:
29
30                1234567890123456789012345678901234567890
31                ----------------------------------------
32              1:1111111111111111111111..................
33              2:1111111111111111111111..................
34              3:11111111111111111111111.................
35              4:111111111111111111111111................
36              5:111111111111111111111111................
37              6:1111111111111111111111111...............
38              7:1111111111111111111111111...............
39              8:1111111111111111111111111...............
40              9:111111111...1111111111111...............
41             10:111111111...1111111111111...............
42             11:111111111...1111111111111...............
43             12:111111111...1111111111111...............
44             13:111111111...1111111111111...............
45             14:111111111...1111111111111...............
46             15:1111111111111111111111111...............
47             16:1111111111111111111111111...............
48             17:111111111111111111111111................
49             18:111111111111111111111111................
50             19:11111111111111111111111.................
51             20:1111111111111111111111..................
52             21:1111111111111111111111..................
53             22:111111111111111111111...................
54             23:..11111111111111111.....................
55             24:...111111111111111......................
56             25:.....11111111111........................
57             26:........................................
58             27:........................................
59             28:........................................
60             29:........................................
61             30:........................................
62             31:........................................
63             32:........................................
64             33:........................................
65             34:........................................
66             35:........................................
67             36:........................................
68             37:........................................
69             38:........................................
70             39:........................................
71             40:........................................
72
73       A three-quarter circle can be defined as:
74
75         CIRCLE(20,20,10) & !PIE(20,20,270,360)
76
77       and looks as follows:
78
79                1234567890123456789012345678901234567890
80                ----------------------------------------
81              1:........................................
82              2:........................................
83              3:........................................
84              4:........................................
85              5:........................................
86              6:........................................
87              7:........................................
88              8:........................................
89              9:........................................
90             10:........................................
91             11:...............111111111................
92             12:..............11111111111...............
93             13:............111111111111111.............
94             14:............111111111111111.............
95             15:...........11111111111111111............
96             16:..........1111111111111111111...........
97             17:..........1111111111111111111...........
98             18:..........1111111111111111111...........
99             19:..........1111111111111111111...........
100             20:..........1111111111111111111...........
101             21:..........1111111111....................
102             22:..........1111111111....................
103             23:..........1111111111....................
104             24:..........1111111111....................
105             25:...........111111111....................
106             26:............11111111....................
107             27:............11111111....................
108             28:..............111111....................
109             29:...............11111....................
110             30:........................................
111             31:........................................
112             32:........................................
113             33:........................................
114             34:........................................
115             35:........................................
116             36:........................................
117             37:........................................
118             38:........................................
119             39:........................................
120             40:........................................
121
122       Two non-intersecting ellipses can be made into the same region:
123
124         ELL(20,20,10,20,90) ⎪ ELL(1,1,20,10,0)
125
126       and looks as follows:
127
128                1234567890123456789012345678901234567890
129                ----------------------------------------
130              1:11111111111111111111....................
131              2:11111111111111111111....................
132              3:11111111111111111111....................
133              4:11111111111111111111....................
134              5:1111111111111111111.....................
135              6:111111111111111111......................
136              7:1111111111111111........................
137              8:111111111111111.........................
138              9:111111111111............................
139             10:111111111...............................
140             11:...........11111111111111111............
141             12:........111111111111111111111111........
142             13:.....11111111111111111111111111111......
143             14:....11111111111111111111111111111111....
144             15:..11111111111111111111111111111111111...
145             16:.1111111111111111111111111111111111111..
146             17:111111111111111111111111111111111111111.
147             18:111111111111111111111111111111111111111.
148             19:111111111111111111111111111111111111111.
149             20:111111111111111111111111111111111111111.
150             21:111111111111111111111111111111111111111.
151             22:111111111111111111111111111111111111111.
152             23:111111111111111111111111111111111111111.
153             24:.1111111111111111111111111111111111111..
154             25:..11111111111111111111111111111111111...
155             26:...11111111111111111111111111111111.....
156             27:.....11111111111111111111111111111......
157             28:.......111111111111111111111111.........
158             29:...........11111111111111111............
159             30:........................................
160             31:........................................
161             32:........................................
162             33:........................................
163             34:........................................
164             35:........................................
165             36:........................................
166             37:........................................
167             38:........................................
168             39:........................................
169             40:........................................
170
171       You can use several boolean operations in a single region expression,
172       to create arbitrarily complex regions.  With the important exception
173       below, you can apply the operators in any order, using parentheses if
174       necessary to override the natural precedences of the operators.
175
176       NB: Using a panda shape is always much more efficient than explicitly
177       specifying "pie & annulus", due to the ability of panda to place a
178       limit on the number of pixels checked in the pie shape.  If you are
179       going to specify the intersection of pie and annulus, use panda
180       instead.
181
182       As described in "help regreometry", the PIE slice goes to the edge of
183       the field. To limit its scope, PIE usually is is combined with other
184       shapes, such as circles and annuli, using boolean operations.  In this
185       context, it is worth noting that that there is a difference between
186       -PIE and &!PIE. The former is a global exclude of all pixels in the PIE
187       slice, while the latter is a local excludes of pixels affecting only
188       the region(s) with which the PIE is combined.  For example, the follow‐
189       ing region uses &!PIE as a local exclude of a single circle. Two other
190       circles are also defined and are unaffected by the local exclude:
191
192               CIRCLE(1,8,1)
193               CIRCLE(8,8,7)&!PIE(8,8,60,120)&!PIE(8,8,240,300)
194               CIRCLE(15,8,2)
195
196                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
197                 - - - - - - - - - - - - - - -
198             15: . . . . . . . . . . . . . . .
199             14: . . . . 2 2 2 2 2 2 2 . . . .
200             13: . . . 2 2 2 2 2 2 2 2 2 . . .
201             12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
202             11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
203             10: . . . . 2 2 2 2 2 2 2 . . . .
204              9: . . . . . . 2 2 2 . . . . 3 3
205              8: 1 . . . . . . . . . . . . 3 3
206              7: . . . . . . 2 2 2 . . . . 3 3
207              6: . . . . 2 2 2 2 2 2 2 . . . .
208              5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
209              4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
210              3: . . . 2 2 2 2 2 2 2 2 2 . . .
211              2: . . . . 2 2 2 2 2 2 2 . . . .
212              1: . . . . . . . . . . . . . . .
213
214       Note that the two other regions are not affected by the &!PIE, which
215       only affects the circle with which it is combined.
216
217       On the other hand, a -PIE is an global exclude that does affect other
218       regions with which it overlaps:
219
220               CIRCLE(1,8,1)
221               CIRCLE(8,8,7)
222               -PIE(8,8,60,120)
223               -PIE(8,8,240,300)
224               CIRCLE(15,8,2)
225
226                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
227                 - - - - - - - - - - - - - - -
228             15: . . . . . . . . . . . . . . .
229             14: . . . . 2 2 2 2 2 2 2 . . . .
230             13: . . . 2 2 2 2 2 2 2 2 2 . . .
231             12: . . 2 2 2 2 2 2 2 2 2 2 2 . .
232             11: . . 2 2 2 2 2 2 2 2 2 2 2 . .
233             10: . . . . 2 2 2 2 2 2 2 . . . .
234              9: . . . . . . 2 2 2 . . . . . .
235              8: . . . . . . . . . . . . . . .
236              7: . . . . . . 2 2 2 . . . . . .
237              6: . . . . 2 2 2 2 2 2 2 . . . .
238              5: . . 2 2 2 2 2 2 2 2 2 2 2 . .
239              4: . . 2 2 2 2 2 2 2 2 2 2 2 . .
240              3: . . . 2 2 2 2 2 2 2 2 2 . . .
241              2: . . . . 2 2 2 2 2 2 2 . . . .
242              1: . . . . . . . . . . . . . . .
243
244       The two smaller circles are entirely contained within the two exclude
245       PIE slices and therefore are excluded from the region.
246

SEE ALSO

248       See funtools(n) for a list of Funtools help pages
249
250
251
252version 1.4.0                   August 15, 2007                  regalgebra(n)
Impressum