1mlib_SignalLPC2Cepstral_S16m_eAddipa(L3iMbLILBi)brarmyliFbu_nScitginoanlsLPC2Cepstral_S16_Adp(3MLIB)
2
3
4

NAME

6       mlib_SignalLPC2Cepstral_S16_Adp  -  convert  linear  prediction coeffi‐
7       cients to cepstral coefficients
8

SYNOPSIS

10       cc [ flag... ] file... -lmlib [ library... ]
11       #include <mlib.h>
12
13       mlib_status mlib_SignalLPC2Cepstral_S16_Adp(mlib_s16 *cepst,
14            mlib_s32 *cscale, const mlib_s16 *lpc, mlib_s32 lscale,
15            mlib_s16 gain, mlib_s32 gscale, mlib_s32 length,
16            mlib_s32 order);
17
18

DESCRIPTION

20       The mlib_SignalLPC2Cepstral_S16_Adp() function converts linear  predic‐
21       tion  coefficients  to cepstral coefficients. The scaling factor of the
22       output data, cscale, will be calculated based on the actual data.
23
24
25       The cepstral coefficients are the coefficients of the Fourier transform
26       representation of the log magnitude spectrum.
27
28
29       The  LPC  cepstral coefficients can be derived recursively from the LPC
30       coefficients as following.
31
32         c(0) = log(G)
33
34                       m-1  k
35         c(m) = a(m) + SUM --- * c(k) * a(m-k), 1 ≤ m ≤ M
36                       k=1  m
37
38                m-1  k
39         c(m) = SUM --- * c(k) * a(m-k), m > M
40                k=1  m
41
42
43
44       See Fundamentals of Speech Recognition by Lawrence Rabiner  and  Biing-
45       Hwang Juang, Prentice Hall, 1993.
46

PARAMETERS

48       The function takes the following arguments:
49
50       cepst     The cepstral coefficients.
51
52
53       cscale    The  scaling  factor  of  the  cepstral  coefficients,  where
54                 actual_data = output_data * 2**(-scaling_factor).
55
56
57       lpc       The linear prediction coefficients.
58
59
60       lscale    The scaling factor of  the  linear  prediction  coefficients,
61                 where actual_data = input_data * 2**(-scaling_factor).
62
63
64       gain      The gain of the LPC model.
65
66
67       gscale    The  scaling  factor  of  the  gain  of  the LPC model, where
68                 actual_data = input_data * 2**(-scaling_factor).
69
70
71       length    The length of the cepstral coefficients.
72
73
74       order     The order of the linear prediction filter.
75
76

RETURN VALUES

78       The function returns MLIB_SUCCESS if successful. Otherwise  it  returns
79       MLIB_FAILURE.
80

ATTRIBUTES

82       See attributes(5) for descriptions of the following attributes:
83
84
85
86
87       ┌─────────────────────────────┬─────────────────────────────┐
88       │      ATTRIBUTE TYPE         │      ATTRIBUTE VALUE        │
89       ├─────────────────────────────┼─────────────────────────────┤
90       │Interface Stability          │Committed                    │
91       ├─────────────────────────────┼─────────────────────────────┤
92       │MT-Level                     │MT-Safe                      │
93       └─────────────────────────────┴─────────────────────────────┘
94

SEE ALSO

96       mlib_SignalLPC2Cepstral_S16(3MLIB),                 mlib_SignalLPC2Cep‐
97       stral_S16_Adp(3MLIB), mlib_SignalLPC2Cepstral_F32(3MLIB), attributes(5)
98
99
100
101SunOS 5.11                        2 Mar 2m0l0i7b_SignalLPC2Cepstral_S16_Adp(3MLIB)
Impressum