1mlib_SignalLPCAutoCorrelGetmPeAdRiCaOLRi_bSm1Ll6ii(bb3r_MaSLriIygBn)FaulnLcPtCiAountsoCorrelGetPARCOR_S16(3MLIB)
2
3
4
6 mlib_SignalLPCAutoCorrelGetPARCOR_S16, mlib_SignalLPCAutoCorrelGetPAR‐
7 COR_S16_Adp - return the partial correlation (PARCOR) coefficients
8
10 cc [ flag... ] file... -lmlib [ library... ]
11 #include <mlib.h>
12
13 mlib_status mlib_SignalLPCAutoCorrelGetPARCOR_S16(
14 mlib_s16 *parcor, mlib_s32 pscale, void *state);
15
16
17 mlib_status mlib_SignalLPCAutoCorrelGetPARCOR_S16_Adp(
18 mlib_s16 *parcor, mlib_s32 *pscale, void *state);
19
20
22 Each of the functions returns the partial correlation (PARCOR) coeffi‐
23 cients.
24
25
26 In linear predictive coding (LPC) model, each speech sample is repre‐
27 sented as a linear combination of the past M samples.
28
29 M
30 s(n) = SUM a(i) * s(n-i) + G * u(n)
31 i=1
32
33
34
35 where s(*) is the speech signal, u(*) is the excitation signal, and G
36 is the gain constants, M is the order of the linear prediction filter.
37 Given s(*), the goal is to find a set of coefficient a(*) that mini‐
38 mizes the prediction error e(*).
39
40 M
41 e(n) = s(n) - SUM a(i) * s(n-i)
42 i=1
43
44
45
46 In autocorrelation method, the coefficients can be obtained by solving
47 following set of linear equations.
48
49 M
50 SUM a(i) * r(|i-k|) = r(k), k=1,...,M
51 i=1
52
53
54
55 where
56
57 N-k-1
58 r(k) = SUM s(j) * s(j+k)
59 j=0
60
61
62
63 are the autocorrelation coefficients of s(*), N is the length of the
64 input speech vector. r(0) is the energy of the speech signal.
65
66
67 Note that the autocorrelation matrix R is a Toeplitz matrix (symmetric
68 with all diagonal elements equal), and the equations can be solved
69 efficiently with Levinson-Durbin algorithm.
70
71
72 See Fundamentals of Speech Recognition by Lawrence Rabiner and Biing-
73 Hwang Juang, Prentice Hall, 1993.
74
75
76 Note for functions with adaptive scaling (with _Adp postfix), the scal‐
77 ing factor of the output data will be calculated based on the actual
78 data; for functions with non-adaptive scaling (without _Adp postfix),
79 the user supplied scaling factor will be used and the output will be
80 saturated if necessary.
81
83 Each function takes the following arguments:
84
85 parcor The partial correlation (PARCOR) coefficients.
86
87
88 pscale The scaling factor of the partial correlation (PARCOR) coef‐
89 ficients, where actual_data = output_data * 2**(-scaling_fac‐
90 tor).
91
92
93 state Pointer to the internal state structure.
94
95
97 Each function returns MLIB_SUCCESS if successful. Otherwise it returns
98 MLIB_FAILURE.
99
101 See attributes(5) for descriptions of the following attributes:
102
103
104
105
106 ┌─────────────────────────────┬─────────────────────────────┐
107 │ ATTRIBUTE TYPE │ ATTRIBUTE VALUE │
108 ├─────────────────────────────┼─────────────────────────────┤
109 │Interface Stability │Committed │
110 ├─────────────────────────────┼─────────────────────────────┤
111 │MT-Level │MT-Safe │
112 └─────────────────────────────┴─────────────────────────────┘
113
115 mlib_SignalLPCAutoCorrelInit_S16(3MLIB), mlib_SignalLPCAutoCor‐
116 rel_S16(3MLIB), mlib_SignalLPCAutoCorrelGetEnergy_S16(3MLIB), mlib_Sig‐
117 nalLPCAutoCorrelFree_S16(3MLIB), attributes(5)
118
119
120
121SunOS 5.11 2mlMiabr_S2i0g0n7alLPCAutoCorrelGetPARCOR_S16(3MLIB)