1mlib_SignalLPCAutoCorrelGetmPeAdRiCaOLRi_bSm1Ll6ii(bb3r_MaSLriIygBn)FaulnLcPtCiAountsoCorrelGetPARCOR_S16(3MLIB)
2
3
4

NAME

6       mlib_SignalLPCAutoCorrelGetPARCOR_S16,  mlib_SignalLPCAutoCorrelGetPAR‐
7       COR_S16_Adp - return the partial correlation (PARCOR) coefficients
8

SYNOPSIS

10       cc [ flag... ] file... -lmlib [ library... ]
11       #include <mlib.h>
12
13       mlib_status mlib_SignalLPCAutoCorrelGetPARCOR_S16(
14            mlib_s16 *parcor, mlib_s32 pscale, void *state);
15
16
17       mlib_status mlib_SignalLPCAutoCorrelGetPARCOR_S16_Adp(
18            mlib_s16 *parcor, mlib_s32 *pscale, void *state);
19
20

DESCRIPTION

22       Each of the functions returns the partial correlation (PARCOR)  coeffi‐
23       cients.
24
25
26       In  linear  predictive coding (LPC) model, each speech sample is repre‐
27       sented as a linear combination of the past M samples.
28
29                      M
30              s(n) = SUM a(i) * s(n-i) + G * u(n)
31                     i=1
32
33
34
35       where s(*) is the speech signal, u(*) is the excitation signal,  and  G
36       is  the gain constants, M is the order of the linear prediction filter.
37       Given s(*), the goal is to find a set of coefficient  a(*)  that  mini‐
38       mizes the prediction error e(*).
39
40                             M
41              e(n) = s(n) - SUM a(i) * s(n-i)
42                            i=1
43
44
45
46       In  autocorrelation method, the coefficients can be obtained by solving
47       following set of linear equations.
48
49               M
50              SUM a(i) * r(|i-k|) = r(k), k=1,...,M
51              i=1
52
53
54
55       where
56
57                    N-k-1
58              r(k) = SUM s(j) * s(j+k)
59                     j=0
60
61
62
63       are the autocorrelation coefficients of s(*), N is the  length  of  the
64       input speech vector. r(0) is the energy of the speech signal.
65
66
67       Note  that the autocorrelation matrix R is a Toeplitz matrix (symmetric
68       with all diagonal elements equal), and  the  equations  can  be  solved
69       efficiently with Levinson-Durbin algorithm.
70
71
72       See  Fundamentals  of Speech Recognition by Lawrence Rabiner and Biing-
73       Hwang Juang, Prentice Hall, 1993.
74
75
76       Note for functions with adaptive scaling (with _Adp postfix), the scal‐
77       ing  factor  of  the output data will be calculated based on the actual
78       data; for functions with non-adaptive scaling (without  _Adp  postfix),
79       the  user  supplied  scaling factor will be used and the output will be
80       saturated if necessary.
81

PARAMETERS

83       Each function takes the following arguments:
84
85       parcor    The partial correlation (PARCOR) coefficients.
86
87
88       pscale    The scaling factor of the partial correlation (PARCOR)  coef‐
89                 ficients, where actual_data = output_data * 2**(-scaling_fac‐
90                 tor).
91
92
93       state     Pointer to the internal state structure.
94
95

RETURN VALUES

97       Each function returns MLIB_SUCCESS if successful. Otherwise it  returns
98       MLIB_FAILURE.
99

ATTRIBUTES

101       See attributes(5) for descriptions of the following attributes:
102
103
104
105
106       ┌─────────────────────────────┬─────────────────────────────┐
107       │      ATTRIBUTE TYPE         │      ATTRIBUTE VALUE        │
108       ├─────────────────────────────┼─────────────────────────────┤
109       │Interface Stability          │Committed                    │
110       ├─────────────────────────────┼─────────────────────────────┤
111       │MT-Level                     │MT-Safe                      │
112       └─────────────────────────────┴─────────────────────────────┘
113

SEE ALSO

115       mlib_SignalLPCAutoCorrelInit_S16(3MLIB),         mlib_SignalLPCAutoCor‐
116       rel_S16(3MLIB), mlib_SignalLPCAutoCorrelGetEnergy_S16(3MLIB), mlib_Sig‐
117       nalLPCAutoCorrelFree_S16(3MLIB), attributes(5)
118
119
120
121SunOS 5.11                        2mlMiabr_S2i0g0n7alLPCAutoCorrelGetPARCOR_S16(3MLIB)
Impressum