1mlib_SignalLPCCovariance_S1m6e(d3iMaLLIiBb)Library Fmulnicbt_iSoingsnalLPCCovariance_S16(3MLIB)
2
3
4
6 mlib_SignalLPCCovariance_S16, mlib_SignalLPCCovariance_S16_Adp - per‐
7 form linear predictive coding with covariance method
8
10 cc [ flag... ] file... -lmlib [ library... ]
11 #include <mlib.h>
12
13 mlib_status mlib_SignalLPCCovariance_S16(mlib_s16 *coeff,
14 mlib_s32 cscale, const mlib_s16 *signal, void *state);
15
16
17 mlib_status mlib_SignalLPCCovariance_S16_Adp(mlib_s16 *coeff,
18 mlib_s32 *cscale, const mlib_s16 *signal, void *state);
19
20
22 Each function performs linear predictive coding with covariance method.
23
24
25 In linear predictive coding (LPC) model, each speech sample is repre‐
26 sented as a linear combination of the past M samples.
27
28 M
29 s(n) = SUM a(i) * s(n-i) + G * u(n)
30 i=1
31
32
33
34 where s(*) is the speech signal, u(*) is the excitation signal, and G
35 is the gain constants, M is the order of the linear prediction filter.
36 Given s(*), the goal is to find a set of coefficient a(*) that mini‐
37 mizes the prediction error e(*).
38
39 M
40 e(n) = s(n) - SUM a(i) * s(n-i)
41 i=1
42
43
44
45 In covariance method, the coefficients can be obtained by solving fol‐
46 lowing set of linear equations.
47
48 M
49 SUM a(i) * c(i,k) = c(0,k), k=1,...,M
50 i=1
51
52
53
54 where
55
56 N-k-1
57 c(i,k) = SUM s(j) * s(j+k-i)
58 j=0
59
60
61
62 are the covariance coefficients of s(*), N is the length of the input
63 speech vector.
64
65
66 Note that the covariance matrix R is a symmetric matrix, and the equa‐
67 tions can be solved efficiently with Cholesky decomposition method.
68
69
70 See Fundamentals of Speech Recognition by Lawrence Rabiner and Biing-
71 Hwang Juang, Prentice Hall, 1993.
72
73
74 Note for functions with adaptive scaling (with _Adp postfix), the scal‐
75 ing factor of the output data will be calculated based on the actual
76 data; for functions with non-adaptive scaling (without _Adp postfix),
77 the user supplied scaling factor will be used and the output will be
78 saturated if necessary.
79
81 Each function takes the following arguments:
82
83 coeff The linear prediction coefficients.
84
85
86 cscale The scaling factor of the linear prediction coefficients,
87 where actual_data = output_data * 2**(-scaling_factor).
88
89
90 signal The input signal vector with samples in Q15 format.
91
92
93 state Pointer to the internal state structure.
94
95
97 Each function returns MLIB_SUCCESS if successful. Otherwise it returns
98 MLIB_FAILURE.
99
101 See attributes(5) for descriptions of the following attributes:
102
103
104
105
106 ┌─────────────────────────────┬─────────────────────────────┐
107 │ ATTRIBUTE TYPE │ ATTRIBUTE VALUE │
108 ├─────────────────────────────┼─────────────────────────────┤
109 │Interface Stability │Committed │
110 ├─────────────────────────────┼─────────────────────────────┤
111 │MT-Level │MT-Safe │
112 └─────────────────────────────┴─────────────────────────────┘
113
115 mlib_SignalLPCCovarianceInit_S16(3MLIB), mlib_SignalLPCCovariance‐
116 Free_S16(3MLIB), attributes(5)
117
118
119
120SunOS 5.11 2 Mar 2007mlib_SignalLPCCovariance_S16(3MLIB)