1vz_exp_(3MVEC)           Vector Math Library Functions          vz_exp_(3MVEC)
2
3
4

NAME

6       vz_exp_, vc_exp_ - vector complex exponential functions
7

SYNOPSIS

9       cc [ flag... ] file... -lmvec [ library... ]
10
11       void vz_exp_(int *n, double complex * restrict z,
12            int *stridez, double  complex * restrict w int *stridew,
13            double * tmp);
14
15
16       void vc_exp_(int *n, float complex * restrict z,
17            int *stridez, float complex * restrict w, int *stridew,
18            float * tmp);
19
20

DESCRIPTION

22       These functions evaluate the complex function exp(z) for an entire vec‐
23       tor of values at once. The first parameter specifies the number of val‐
24       ues  to  compute. Subsequent parameters specify the argument and result
25       vectors. Each vector is described by a pointer to the first element and
26       a  stride, which is the increment between successive elements. The last
27       argument is a pointer to scratch storage; this storage  must  be  large
28       enough  to hold *n consecutive values of the real type corresponding to
29       the complex type of the argument and result.
30
31
32       Specifically, vz_exp_(n, z, sz, w, sw,  tmp)  computes  w[i  *  *sw]  =
33       exp(z[i  * *sz]) for each i = 0, 1, ..., *n - 1. The vc_exp_() function
34       performs the same  computation for single precision data.
35
36
37       These functions are not guaranteed to deliver results that are  identi‐
38       cal to the results of the cexp(3M) functions given the same arguments.
39

USAGE

41       The  element  count  *n  must be greater than zero. The strides for the
42       argument and result arrays can be arbitrary integers,  but  the  arrays
43       themselves  must  not be the same or overlap. A zero stride effectively
44       collapses an entire vector into a single  element.  A  negative  stride
45       causes  a  vector  to  be accessed in descending memory order, but note
46       that the corresponding pointer must still point to the first element of
47       the  vector  to  be  used;  if the stride is negative, this will be the
48       highest-addressed element in memory. This convention differs  from  the
49       Level  1  BLAS,  in  which array parameters always refer to the lowest-
50       addressed element in memory even when negative increments are used.
51
52
53       These functions  assume  that  the  default  round-to-nearest  rounding
54       direction  mode  is in effect. On x86, these functions also assume that
55       the default round-to-64-bit rounding precision mode is in  effect.  The
56       result of calling a vector function with a non-default rounding mode in
57       effect is undefined.
58
59
60       Unlike the c99 cexp(3M) functions, the vector complex exponential func‐
61       tions make no attempt to handle special cases and exceptions; they sim‐
62       ply use textbook formulas to compute a complex exponential in terms  of
63       real  elementary functions. As a result, these functions can raise dif‐
64       ferent exceptions and/or deliver different results from cexp().
65

ATTRIBUTES

67       See attributes(5) for descriptions of the following attributes:
68
69
70
71
72       ┌─────────────────────────────┬─────────────────────────────┐
73       │      ATTRIBUTE TYPE         │      ATTRIBUTE VALUE        │
74       ├─────────────────────────────┼─────────────────────────────┤
75       │Interface Stability          │Committed                    │
76       ├─────────────────────────────┼─────────────────────────────┤
77       │MT-Level                     │MT-Safe                      │
78       └─────────────────────────────┴─────────────────────────────┘
79

SEE ALSO

81       cexp(3M), attributes(5)
82
83
84
85SunOS 5.11                        14 Dec 2007                   vz_exp_(3MVEC)
Impressum