1vz_exp_(3MVEC) Vector Math Library Functions vz_exp_(3MVEC)
2
3
4
6 vz_exp_, vc_exp_ - vector complex exponential functions
7
9 cc [ flag... ] file... -lmvec [ library... ]
10
11 void vz_exp_(int *n, double complex * restrict z,
12 int *stridez, double complex * restrict w int *stridew,
13 double * tmp);
14
15
16 void vc_exp_(int *n, float complex * restrict z,
17 int *stridez, float complex * restrict w, int *stridew,
18 float * tmp);
19
20
22 These functions evaluate the complex function exp(z) for an entire vec‐
23 tor of values at once. The first parameter specifies the number of val‐
24 ues to compute. Subsequent parameters specify the argument and result
25 vectors. Each vector is described by a pointer to the first element and
26 a stride, which is the increment between successive elements. The last
27 argument is a pointer to scratch storage; this storage must be large
28 enough to hold *n consecutive values of the real type corresponding to
29 the complex type of the argument and result.
30
31
32 Specifically, vz_exp_(n, z, sz, w, sw, tmp) computes w[i * *sw] =
33 exp(z[i * *sz]) for each i = 0, 1, ..., *n - 1. The vc_exp_() function
34 performs the same computation for single precision data.
35
36
37 These functions are not guaranteed to deliver results that are identi‐
38 cal to the results of the cexp(3M) functions given the same arguments.
39
41 The element count *n must be greater than zero. The strides for the
42 argument and result arrays can be arbitrary integers, but the arrays
43 themselves must not be the same or overlap. A zero stride effectively
44 collapses an entire vector into a single element. A negative stride
45 causes a vector to be accessed in descending memory order, but note
46 that the corresponding pointer must still point to the first element of
47 the vector to be used; if the stride is negative, this will be the
48 highest-addressed element in memory. This convention differs from the
49 Level 1 BLAS, in which array parameters always refer to the lowest-
50 addressed element in memory even when negative increments are used.
51
52
53 These functions assume that the default round-to-nearest rounding
54 direction mode is in effect. On x86, these functions also assume that
55 the default round-to-64-bit rounding precision mode is in effect. The
56 result of calling a vector function with a non-default rounding mode in
57 effect is undefined.
58
59
60 Unlike the c99 cexp(3M) functions, the vector complex exponential func‐
61 tions make no attempt to handle special cases and exceptions; they sim‐
62 ply use textbook formulas to compute a complex exponential in terms of
63 real elementary functions. As a result, these functions can raise dif‐
64 ferent exceptions and/or deliver different results from cexp().
65
67 See attributes(5) for descriptions of the following attributes:
68
69
70
71
72 ┌─────────────────────────────┬─────────────────────────────┐
73 │ ATTRIBUTE TYPE │ ATTRIBUTE VALUE │
74 ├─────────────────────────────┼─────────────────────────────┤
75 │Interface Stability │Committed │
76 ├─────────────────────────────┼─────────────────────────────┤
77 │MT-Level │MT-Safe │
78 └─────────────────────────────┴─────────────────────────────┘
79
81 cexp(3M), attributes(5)
82
83
84
85SunOS 5.11 14 Dec 2007 vz_exp_(3MVEC)