1vz_pow_(3MVEC) Vector Math Library Functions vz_pow_(3MVEC)
2
3
4
6 vz_pow_, vc_pow_ - vector complex power functions
7
9 cc [ flag... ] file... -lmvec [ library... ]
10
11 void vz_pow_(int *n, double complex * restrict z,
12 int *stridez, double complex * restrict w, int *stridew,
13 double complex * restrict u, int *strideu,
14 double * tmp);
15
16
17 void vc_pow_(int *n, float complex * restrict z,
18 int *stridez, float complex * restrict w, int *stridew,
19 float complex * restrict u, int *strideu,
20 float * tmp);
21
22
24 These functions evaluate the complex function z^w for an entire vector
25 of values at once. The first parameter specifies the number of values
26 to compute. Subsequent parameters specify the argument and result vec‐
27 tors. Each vector is described by a pointer to the first element and a
28 stride, which is the increment between successive elements. The last
29 argument is a pointer to scratch storage; this storage must be large
30 enough to hold 3 * *n consecutive values of the real type corresponding
31 to the complex type of the argument and result.
32
33
34 Specifically, vz_pow_(n, z, sz, w, sw, u, su, tmp) computes u[i * *su]
35 = (z[i * *sz])^(w[i * *sw]) for each i = 0, 1, ..., *n - 1. The
36 vc_pow_() function performs the same computation for single precision
37 data.
38
39
40 These functions are not guaranteed to deliver results that are identi‐
41 cal to the results of the cpow(3M) functions given the same arguments.
42
44 The element count *n must be greater than zero. The strides for the
45 argument and result arrays can be arbitrary integers, but the arrays
46 themselves must not be the same or overlap. A zero stride effectively
47 collapses an entire vector into a single element. A negative stride
48 causes a vector to be accessed in descending memory order, but note
49 that the corresponding pointer must still point to the first element of
50 the vector to be used; if the stride is negative, this will be the
51 highest-addressed element in memory. This convention differs from the
52 Level 1 BLAS, in which array parameters always refer to the lowest-
53 addressed element in memory even when negative increments are used.
54
55
56 These functions assume that the default round-to-nearest rounding
57 direction mode is in effect. On x86, these functions also assume that
58 the default round-to-64-bit rounding precision mode is in effect. The
59 result of calling a vector function with a non-default rounding mode in
60 effect is undefined.
61
62
63 Unlike the c99 cpow(3M) functions, the vector complex exponential func‐
64 tions make no attempt to handle special cases and exceptions; they sim‐
65 ply use textbook formulas to compute a complex exponential in terms of
66 real elementary functions. As a result, these functions can raise dif‐
67 ferent exceptions and/or deliver different results from cpow().
68
70 See attributes(5) for descriptions of the following attributes:
71
72
73
74
75 ┌─────────────────────────────┬─────────────────────────────┐
76 │ ATTRIBUTE TYPE │ ATTRIBUTE VALUE │
77 ├─────────────────────────────┼─────────────────────────────┤
78 │Interface Stability │Committed │
79 ├─────────────────────────────┼─────────────────────────────┤
80 │MT-Level │MT-Safe │
81 └─────────────────────────────┴─────────────────────────────┘
82
84 cpow(3M), attributes(5)
85
86
87
88SunOS 5.11 14 Dec 2007 vz_pow_(3MVEC)