1i.vi(1)                     GRASS GIS User's Manual                    i.vi(1)
2
3
4

NAME

6       i.vi  - Calculates different types of vegetation indices.
7       Uses  red  and  nir  bands  mostly, and some indices require additional
8       bands.
9

KEYWORDS

11       imagery, vegetation index, biophysical parameters, NDVI
12

SYNOPSIS

14       i.vi
15       i.vi --help
16       i.vi output=name viname=type   [red=name]    [nir=name]    [green=name]
17       [blue=name]     [band5=name]    [band7=name]    [soil_line_slope=float]
18       [soil_line_intercept=float]     [soil_noise_reduction=float]     [stor‐
19       age_bit=integer]     [--overwrite]   [--help]   [--verbose]   [--quiet]
20       [--ui]
21
22   Flags:
23       --overwrite
24           Allow output files to overwrite existing files
25
26       --help
27           Print usage summary
28
29       --verbose
30           Verbose module output
31
32       --quiet
33           Quiet module output
34
35       --ui
36           Force launching GUI dialog
37
38   Parameters:
39       output=name [required]
40           Name for output raster map
41
42       viname=type [required]
43           Type of vegetation index
44           Options: arvi, ci, dvi, evi, evi2, gvi, gari,  gemi,  ipvi,  msavi,
45           msavi2, ndvi, ndwi, pvi, savi, sr, vari, wdvi
46           Default: ndvi
47           arvi: Atmospherically Resistant Vegetation Index
48           ci: Crust Index
49           dvi: Difference Vegetation Index
50           evi: Enhanced Vegetation Index
51           evi2: Enhanced Vegetation Index 2
52           gvi: Green Vegetation Index
53           gari: Green Atmospherically Resistant Vegetation Index
54           gemi: Global Environmental Monitoring Index
55           ipvi: Infrared Percentage Vegetation Index
56           msavi: Modified Soil Adjusted Vegetation Index
57           msavi2: second Modified Soil Adjusted Vegetation Index
58           ndvi: Normalized Difference Vegetation Index
59           ndwi: Normalized Difference Water Index
60           pvi: Perpendicular Vegetation Index
61           savi: Soil Adjusted Vegetation Index
62           sr: Simple Ratio
63           vari: Visible Atmospherically Resistant Index
64           wdvi: Weighted Difference Vegetation Index
65
66       red=name
67           Name of input red channel surface reflectance map
68           Range: [0.0;1.0]
69
70       nir=name
71           Name of input nir channel surface reflectance map
72           Range: [0.0;1.0]
73
74       green=name
75           Name of input green channel surface reflectance map
76           Range: [0.0;1.0]
77
78       blue=name
79           Name of input blue channel surface reflectance map
80           Range: [0.0;1.0]
81
82       band5=name
83           Name of input 5th channel surface reflectance map
84           Range: [0.0;1.0]
85
86       band7=name
87           Name of input 7th channel surface reflectance map
88           Range: [0.0;1.0]
89
90       soil_line_slope=float
91           Value of the slope of the soil line (MSAVI and PVI only)
92
93       soil_line_intercept=float
94           Value of the intercept of the soil line (MSAVI only)
95
96       soil_noise_reduction=float
97           Value of the factor of reduction of soil noise (MSAVI only)
98
99       storage_bit=integer
100           Maximum bits for digital numbers
101           If  data  is  in  Digital Numbers (i.e. integer type), give the max
102           bits (i.e. 8 for Landsat -> [0-255])
103           Options: 7, 8, 10, 16
104           Default: 8
105

DESCRIPTION

107       i.vi calculates vegetation indices based on biophysical parameters.
108
109           •   ARVI: Atmospherically Resistant Vegetation Index
110
111           •   CI: Crust Index
112
113           •   DVI: Difference Vegetation Index
114
115           •   EVI: Enhanced Vegetation Index
116
117           •   EVI2: Enhanced Vegetation Index 2
118
119           •   GARI: Green atmospherically resistant vegetation index
120
121           •   GEMI: Global Environmental Monitoring Index
122
123           •   GVI: Green Vegetation Index
124
125           •   IPVI: Infrared Percentage Vegetation Index
126
127           •   MSAVI2: second Modified Soil Adjusted Vegetation Index
128
129           •   MSAVI: Modified Soil Adjusted Vegetation Index
130
131           •   NDVI: Normalized Difference Vegetation Index
132
133           •   NDWI: Normalized Difference Water Index
134
135           •   PVI: Perpendicular Vegetation Index
136
137           •   RVI: ratio vegetation index
138
139           •   SAVI: Soil Adjusted Vegetation Index
140
141           •   SR: Simple Vegetation ratio
142
143           •   WDVI: Weighted Difference Vegetation Index
144
145   Background for users new to remote sensing
146       Vegetation Indices are often considered the entry point of remote sens‐
147       ing  for  Earth land monitoring. They are suffering from their success,
148       in terms that often people tend to harvest satellite images from online
149       sources and use them directly in this module.
150
151       From Digital number to Radiance:
152       Satellite imagery is commonly stored in Digital Number (DN) for storage
153       purposes; e.g., Landsat5 data is stored in 8bit values (ranging from  0
154       to 255), other satellites maybe stored in 10 or 16 bits. If the data is
155       provided in DN, this implies that this imagery is  "uncorrected".  What
156       this means is that the image is what the satellite sees at its position
157       and altitude in space (stored in DN).  This is not the signal at ground
158       yet.  We call this data at-satellite or at-sensor. Encoded in the 8bits
159       (or more) is the amount of energy sensed by the sensor inside the  sat‐
160       ellite  platform.  This energy is called radiance-at-sensor. Generally,
161       satellites image providers encode the radiance-at-sensor into 8bit  (or
162       more)  through  an affine transform equation (y=ax+b). In case of using
163       Landsat imagery, look at the i.landsat.toar for an easy way  to  trans‐
164       form   DN   to   radiance-at-sensor.  If  using  Aster  data,  try  the
165       i.aster.toar module.
166
167       From Radiance to Reflectance:
168       Finally, once having obtained the radiance at sensor values, still  the
169       atmosphere is between sensor and Earth’s surface. This fact needs to be
170       corrected to account for the atmospheric interaction with the  sun  en‐
171       ergy that the vegetation reflects back into space.  This can be done in
172       two ways for Landsat. The simple way  is  through  i.landsat.toar,  use
173       e.g.  the  DOS  correction.  The more accurate way is by using i.atcorr
174       (which works for many satellite sensors). Once the atmospheric  correc‐
175       tion has been applied to the satellite data, data vales are called sur‐
176       face reflectance.  Surface reflectance is ranging from 0.0 to 1.0 theo‐
177       retically (and absolutely). This level of data correction is the proper
178       level of correction to use with i.vi.
179
180   Vegetation Indices
181       ARVI: Atmospheric Resistant Vegetation Index
182
183       ARVI is resistant to atmospheric effects (in comparison  to  the  NDVI)
184       and  is  accomplished  by a self correcting process for the atmospheric
185       effect in the red channel, using the difference in the radiance between
186       the blue and the red channels (Kaufman and Tanre 1996).
187       arvi( redchan, nirchan, bluechan )
188       ARVI = (nirchan - (2.0*redchan - bluechan)) /
189              ( nirchan + (2.0*redchan - bluechan))
190       CI: Crust Index
191
192       Advantage  is taken of a unique spectral feature of soil biogenic crust
193       containing cyanobacteria. It has been shown that the special phycobilin
194       pigment  in  cyanobacteria contributes in producing a relatively higher
195       reflectance in the blue spectral region than the same type of substrate
196       without  the  biogenic crust. The spectral crust index (CI) is based on
197       the normalized difference between the RED and the BLUE spectral  values
198       (Karnieli, 1997, DOI: 10.1080/014311697218368).
199       ci ( bluechan, redchan )
200       CI = 1 - (redchan - bluechan) /
201              (redchan + bluechan)
202
203       DVI: Difference Vegetation Index
204       dvi( redchan, nirchan )
205       DVI = ( nirchan - redchan )
206
207       EVI: Enhanced Vegetation Index
208
209       The  enhanced  vegetation index (EVI) is an optimized index designed to
210       enhance the vegetation signal with improved sensitivity in high biomass
211       regions and improved vegetation monitoring through a de-coupling of the
212       canopy background signal  and  a  reduction  in  atmosphere  influences
213       (Huete A.R., Liu H.Q., Batchily K., van Leeuwen W. (1997). A comparison
214       of vegetation indices global set of TM  images  for  EOS-MODIS.  Remote
215       Sensing of Environment, 59:440-451).
216       evi( bluechan, redchan, nirchan )
217       EVI = 2.5 * ( nirchan - redchan ) /
218             ( nirchan + 6.0 * redchan - 7.5 * bluechan + 1.0 )
219
220       EVI2: Enhanced Vegetation Index 2
221
222       A 2-band EVI (EVI2), without a blue band, which has the best similarity
223       with the 3-band EVI, particularly  when  atmospheric  effects  are  in‐
224       significant and data quality is good (Zhangyan Jiang ; Alfredo R. Huete
225       ; Youngwook Kim and Kamel Didan 2-band enhanced vegetation index  with‐
226       out a blue band and its application to AVHRR data. Proc. SPIE 6679, Re‐
227       mote Sensing and Modeling of Ecosystems for Sustainability  IV,  667905
228       (october 09, 2007) doi:10.1117/12.734933).
229       evi2( redchan, nirchan )
230       EVI2 = 2.5 * ( nirchan - redchan ) /
231              ( nirchan + 2.4 * redchan + 1.0 )
232
233       GARI: green atmospherically resistant vegetation index
234
235       The  formula was actually defined: Gitelson, Anatoly A.; Kaufman, Yoram
236       J.; Merzlyak, Mark N. (1996) Use of a green channel in  remote  sensing
237       of  global vegetation from EOS- MODIS, Remote Sensing of Environment 58
238       (3), 289-298.  doi:10.1016/s0034-4257(96)00072-7
239       gari( redchan, nirchan, bluechan, greenchan )
240       GARI = ( nirchan - (greenchan - (bluechan - redchan))) /
241              ( nirchan + (greenchan - (bluechan - redchan)))
242
243       GEMI: Global Environmental Monitoring Index
244       gemi( redchan, nirchan )
245       GEMI = (( (2*((nirchan * nirchan)-(redchan * redchan)) +
246              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5)) *
247              (1 - 0.25 * (2*((nirchan * nirchan)-(redchan * redchan)) +
248              1.5*nirchan+0.5*redchan) / (nirchan + redchan + 0.5))) -
249              ( (redchan - 0.125) / (1 - redchan))
250
251       GVI: Green Vegetation Index
252       gvi( bluechan, greenchan, redchan, nirchan, chan5chan, chan7chan)
253       GVI = ( -0.2848 * bluechan - 0.2435 * greenchan -
254             0.5436 * redchan + 0.7243 * nirchan + 0.0840 * chan5chan-
255             0.1800 * chan7chan)
256
257       IPVI: Infrared Percentage Vegetation Index
258       ipvi( redchan, nirchan )
259       IPVI = nirchan/(nirchan+redchan)
260
261       MSAVI2: second Modified Soil Adjusted Vegetation Index
262       msavi2( redchan, nirchan )
263       MSAVI2 = (1/2)*(2*NIR+1-sqrt((2*NIR+1)^2-8*(NIR-red)))
264
265       MSAVI: Modified Soil Adjusted Vegetation Index
266       msavi( redchan, nirchan )
267       MSAVI = s(NIR-s*red-a) / (a*NIR+red-a*s+X*(1+s*s))
268       where a is the soil line intercept, s is the soil  line  slope,  and  X
269         is  an adjustment factor which is set to minimize soil noise (0.08 in
270       original papers).
271
272       NDVI: Normalized Difference Vegetation Index
273       ndvi( redchan, nirchan )
274       Satellite specific band numbers ([NIR, Red]):
275         MSS Bands        = [ 7,  5]
276         TM1-5,7 Bands    = [ 4,  3]
277         TM8 Bands        = [ 5,  4]
278         Sentinel-2 Bands = [ 8,  4]
279         AVHRR Bands      = [ 2,  1]
280         SPOT XS Bands    = [ 3,  2]
281         AVIRIS Bands     = [51, 29]
282       NDVI = (NIR - Red) / (NIR + Red)
283
284       NDWI: Normalized Difference Water Index (after McFeeters, 1996)
285
286       This index is suitable to detect water bodies.
287       ndwi( greenchan, nirchan )
288       NDWI = (green - NIR) / (green + NIR)
289
290       The water content of leaves can be estimated with another  NDWI  (after
291       Gao, 1996):
292       ndwi( greenchan, nirchan )
293       NDWI = (NIR - SWIR) / (NIR + SWIR)
294       This  index  is  important for monitoring vegetation health (not imple‐
295       mented).
296
297       PVI: Perpendicular Vegetation Index
298       pvi( redchan, nirchan, soil_line_slope )
299       PVI = sin(a)NIR-cos(a)red
300
301       SAVI: Soil Adjusted Vegetation Index
302       savi( redchan, nirchan )
303       SAVI = ((1.0+0.5)*(nirchan - redchan)) / (nirchan + redchan +0.5)
304
305       SR: Simple Vegetation ratio
306       sr( redchan, nirchan )
307       SR = (nirchan/redchan)
308
309       VARI: Visible Atmospherically Resistant Index VARI was designed to  in‐
310       troduce  an  atmospheric  self-correction (Gitelson A.A., Kaufman Y.J.,
311       Stark R., Rundquist D., 2002. Novel algorithms for estimation of  vege‐
312       tation fraction Remote Sensing of Environment (80), pp76-87.)
313       vari = ( bluechan, greenchan, redchan )
314       VARI = (green - red ) / (green + red - blue)
315
316       WDVI: Weighted Difference Vegetation Index
317       wdvi( redchan, nirchan, soil_line_weight )
318       WDVI = nirchan - a * redchan
319       if(soil_weight_line == None):
320          a = 1.0   #slope of soil line
321

EXAMPLES

323   Calculation of DVI
324       The calculation of DVI from the reflectance values is done as follows:
325       g.region raster=band.1 -p
326       i.vi blue=band.1 red=band.3 nir=band.4 viname=dvi output=dvi
327       r.univar -e dvi
328
329   Calculation of EVI
330       The calculation of EVI from the reflectance values is done as follows:
331       g.region raster=band.1 -p
332       i.vi blue=band.1 red=band.3 nir=band.4 viname=evi output=evi
333       r.univar -e evi
334
335   Calculation of EVI2
336       The calculation of EVI2 from the reflectance values is done as follows:
337       g.region raster=band.3 -p
338       i.vi red=band.3 nir=band.4 viname=evi2 output=evi2
339       r.univar -e evi2
340
341   Calculation of GARI
342       The calculation of GARI from the reflectance values is done as follows:
343       g.region raster=band.1 -p
344       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 viname=gari output=gari
345       r.univar -e gari
346
347   Calculation of GEMI
348       The calculation of GEMI from the reflectance values is done as follows:
349       g.region raster=band.3 -p
350       i.vi red=band.3 nir=band.4 viname=gemi output=gemi
351       r.univar -e gemi
352
353   Calculation of GVI
354       The calculation of GVI (Green Vegetation Index - Tasseled Cap) from the
355       reflectance values is done as follows:
356       g.region raster=band.3 -p
357       # assuming Landsat-7
358       i.vi blue=band.1 green=band.2 red=band.3 nir=band.4 band5=band.5 band7=band.7 viname=gvi output=gvi
359       r.univar -e gvi
360
361   Calculation of IPVI
362       The calculation of IPVI from the reflectance values is done as follows:
363       g.region raster=band.3 -p
364       i.vi red=band.3 nir=band.4 viname=ipvi output=ipvi
365       r.univar -e ipvi
366
367   Calculation of MSAVI
368       The calculation of MSAVI from the reflectance values is  done  as  fol‐
369       lows:
370       g.region raster=band.3 -p
371       i.vi red=band.3 nir=band.4 viname=msavi output=msavi
372       r.univar -e msavi
373
374   Calculation of NDVI
375       The calculation of NDVI from the reflectance values is done as follows:
376       g.region raster=band.3 -p
377       i.vi red=band.3 nir=band.4 viname=ndvi output=ndvi
378       r.univar -e ndvi
379
380   Calculation of NDWI
381       The calculation of NDWI from the reflectance values is done as follows:
382       g.region raster=band.2 -p
383       i.vi green=band.2 nir=band.4 viname=ndwi output=ndwi
384       r.colors ndwi color=byg -n
385       r.univar -e ndwi
386
387   Calculation of PVI
388       The calculation of PVI from the reflectance values is done as follows:
389       g.region raster=band.3 -p
390       i.vi red=band.3 nir=band.4 soil_line_slope=0.45 viname=pvi output=pvi
391       r.univar -e pvi
392
393   Calculation of SAVI
394       The calculation of SAVI from the reflectance values is done as follows:
395       g.region raster=band.3 -p
396       i.vi red=band.3 nir=band.4 viname=savi output=savi
397       r.univar -e savi
398
399   Calculation of SR
400       The calculation of SR from the reflectance values is done as follows:
401       g.region raster=band.3 -p
402       i.vi red=band.3 nir=band.4 viname=sr output=sr
403       r.univar -e sr
404
405   Calculation of VARI
406       The calculation of VARI from the reflectance values is done as follows:
407       g.region raster=band.3 -p
408       i.vi blue=band.2 green=band.3 red=band.4 viname=vari output=vari
409       r.univar -e vari
410
411   Landsat TM7 example
412       The following examples are based on a LANDSAT TM7 scene included in the
413       North Carolina sample dataset.
414
415   Preparation: DN to reflectance
416       As a first step, the original DN (digital number) pixel values must  be
417       converted to reflectance using i.landsat.toar. To do so, we make a copy
418       (or rename the channels) to match i.landsat.toar’s input scheme:
419
420       g.copy raster=lsat7_2002_10,lsat7_2002.1
421       g.copy raster=lsat7_2002_20,lsat7_2002.2
422       g.copy raster=lsat7_2002_30,lsat7_2002.3
423       g.copy raster=lsat7_2002_40,lsat7_2002.4
424       g.copy raster=lsat7_2002_50,lsat7_2002.5
425       g.copy raster=lsat7_2002_61,lsat7_2002.61
426       g.copy raster=lsat7_2002_62,lsat7_2002.62
427       g.copy raster=lsat7_2002_70,lsat7_2002.7
428       g.copy raster=lsat7_2002_80,lsat7_2002.8
429
430       Calculation of reflectance values from DN using DOS1 (metadata obtained
431       from p016r035_7x20020524.met.gz):
432
433       i.landsat.toar input=lsat7_2002. output=lsat7_2002_toar. sensor=tm7 \
434         method=dos1 date=2002-05-24 sun_elevation=64.7730999 \
435         product_date=2004-02-12 gain=HHHLHLHHL
436       The   resulting   Landsat   channels  are  names  lsat7_2002_toar.1  ..
437       lsat7_2002_toar.8.
438
439   Calculation of NDVI
440       The calculation of NDVI from the reflectance values is done as follows:
441       g.region raster=lsat7_2002_toar.3 -p
442       i.vi red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 viname=ndvi \
443            output=lsat7_2002.ndvi
444       r.colors lsat7_2002.ndvi color=ndvi
445       d.mon wx0
446       d.rast.leg lsat7_2002.ndvi
447       North Carolina dataset: NDVI
448
449   Calculation of ARVI
450       The calculation of ARVI from the reflectance values is done as follows:
451       g.region raster=lsat7_2002_toar.3 -p
452       i.vi blue=lsat7_2002_toar.1 red=lsat7_2002_toar.3 nir=lsat7_2002_toar.4 \
453            viname=arvi output=lsat7_2002.arvi
454       d.mon wx0
455       d.rast.leg lsat7_2002.arvi
456       North Carolina dataset: ARVI
457
458   Calculation of GARI
459       The calculation of GARI from the reflectance values is done as follows:
460       g.region raster=lsat7_2002_toar.3 -p
461       i.vi blue=lsat7_2002_toar.1 green=lsat7_2002_toar.2 red=lsat7_2002_toar.3 \
462            nir=lsat7_2002_toar.4 viname=gari output=lsat7_2002.gari
463       d.mon wx0
464       d.rast.leg lsat7_2002.gari
465       North Carolina dataset: GARI
466

NOTES

468       Originally from kepler.gps.caltech.edu (FAQ):
469
470       A FAQ on Vegetation in Remote Sensing
471       Written by Terrill W. Ray, Div. of Geological and  Planetary  Sciences,
472       California   Institute  of  Technology,  email:  terrill@mars1.gps.cal‐
473       tech.edu
474
475       Snail Mail:  Terrill Ray
476       Division of Geological and Planetary Sciences
477       Caltech, Mail Code 170-25
478       Pasadena, CA  91125
479

REFERENCES

481       AVHRR, Landsat TM5:
482
483           •   Bastiaanssen, W.G.M., 1995.  Regionalization  of  surface  flux
484               densities  and  moisture indicators in composite terrain; a re‐
485               mote sensing approach under clear skies in  mediterranean  cli‐
486               mates.  PhD  thesis, Wageningen Agricultural Univ., The Nether‐
487               land, 271 pp.  (PDF)
488
489           •   Index DataBase: List of available Indices
490

SEE ALSO

492        i.albedo, i.aster.toar, i.landsat.toar, i.atcorr, i.tasscap
493

AUTHORS

495       Baburao Kamble, Asian Institute of Technology, Thailand
496       Yann Chemin, Asian Institute of Technology, Thailand
497

SOURCE CODE

499       Available at: i.vi source code (history)
500
501       Accessed: Saturday Oct 28 18:19:14 2023
502
503       Main index | Imagery index | Topics index | Keywords index |  Graphical
504       index | Full index
505
506       © 2003-2023 GRASS Development Team, GRASS GIS 8.3.1 Reference Manual
507
508
509
510GRASS 8.3.1                                                            i.vi(1)
Impressum