1SIGNAL(2)                  Linux Programmer's Manual                 SIGNAL(2)
2
3
4

NAME

6       signal - ANSI C signal handling
7

SYNOPSIS

9       #include <signal.h>
10
11       typedef void (*sighandler_t)(int);
12
13       sighandler_t signal(int signum, sighandler_t handler);
14

DESCRIPTION

16       The behavior of signal() varies across Unix versions, and has also var‐
17       ied historically across different versions of Linux.   Avoid  its  use:
18       use sigaction(2) instead.  See Portability below.
19
20       signal() sets the disposition of the signal signum to handler, which is
21       either SIG_IGN, SIG_DFL, or the address of a  programmer-defined  func‐
22       tion (a "signal handler").
23
24       If  the signal signum is delivered to the process, then one of the fol‐
25       lowing happens:
26
27       *  If the disposition is set to SIG_IGN, then the signal is ignored.
28
29       *  If the disposition is set to SIG_DFL, then the default action  asso‐
30          ciated with the signal (see signal(7)) occurs.
31
32       *  If  the disposition is set to a function, then first either the dis‐
33          position is reset to SIG_DFL, or the signal is blocked  (see  Porta‐
34          bility  below), and then handler is called with argument signum.  If
35          invocation of the handler caused the signal to be blocked, then  the
36          signal is unblocked upon return from the handler.
37
38       The signals SIGKILL and SIGSTOP cannot be caught or ignored.
39

RETURN VALUE

41       signal()  returns  the previous value of the signal handler, or SIG_ERR
42       on error.
43

ERRORS

45       EINVAL signum is invalid.
46

CONFORMING TO

48       C89, C99, POSIX.1-2001.
49

NOTES

51       The effects of signal() in a multithreaded process are unspecified.
52
53       According to POSIX, the behavior of a process  is  undefined  after  it
54       ignores  a  SIGFPE, SIGILL, or SIGSEGV signal that was not generated by
55       kill(2) or raise(3).  Integer division by zero  has  undefined  result.
56       On some architectures it will generate a SIGFPE signal.  (Also dividing
57       the most negative integer by -1 may generate  SIGFPE.)   Ignoring  this
58       signal might lead to an endless loop.
59
60       See  sigaction(2)  for  details  on what happens when SIGCHLD is set to
61       SIG_IGN.
62
63       See signal(7) for a list of the async-signal-safe functions that can be
64       safely called from inside a signal handler.
65
66       The  use  of sighandler_t is a GNU extension.  Various versions of libc
67       predefine this  type;  libc4  and  libc5  define  SignalHandler;  glibc
68       defines  sig_t  and,  when  _GNU_SOURCE  is defined, also sighandler_t.
69       Without use of such a type, the declaration of signal() is the somewhat
70       harder to read:
71
72           void ( *signal(int signum, void (*handler)(int)) ) (int);
73
74   Portability
75       The  only  portable use of signal() is to set a signal's disposition to
76       SIG_DFL or SIG_IGN.  The semantics when using signal() to  establish  a
77       signal handler vary across systems (and POSIX.1 explicitly permits this
78       variation); do not use it for this purpose.
79
80       POSIX.1 solved the portability mess by specifying  sigaction(2),  which
81       provides  explicit  control  of  the semantics when a signal handler is
82       invoked; use that interface instead of signal().
83
84       In the original Unix systems, when a handler that was established using
85       signal()  was  invoked  by the delivery of a signal, the disposition of
86       the signal would be reset to SIG_DFL, and  the  system  did  not  block
87       delivery  of  further  instances of the signal.  System V also provides
88       these semantics for signal().  This was bad because the signal might be
89       delivered  again before the handler had a chance to reestablish itself.
90       Furthermore, rapid deliveries of the same signal could result in recur‐
91       sive invocations of the handler.
92
93       BSD improved on this situation by changing the semantics of signal han‐
94       dling (but, unfortunately, silently changed the semantics  when  estab‐
95       lishing  a  handler  with  signal()).  On BSD, when a signal handler is
96       invoked, the signal disposition is not reset, and further instances  of
97       the  signal  are blocked from being delivered while the handler is exe‐
98       cuting.
99
100       The situation on Linux is as follows:
101
102       * The kernel's signal() system call provides System V semantics.
103
104       * By default, in glibc 2 and later, the signal() wrapper function  does
105         not  invoke  the  kernel system call.  Instead, it calls sigaction(2)
106         using flags that supply BSD semantics.  This default behavior is pro‐
107         vided  as  long as the _BSD_SOURCE feature test macro is defined.  By
108         default, _BSD_SOURCE is defined; it is also implicitly defined if one
109         defines _GNU_SOURCE, and can of course be explicitly defined.
110
111         On  glibc  2  and later, if the _BSD_SOURCE feature test macro is not
112         defined, then signal() provides System  V  semantics.   (The  default
113         implicit  definition  of  _BSD_SOURCE  is not provided if one invokes
114         gcc(1) in one of its standard modes (-std=xxx or  -ansi)  or  defines
115         various   other   feature   test   macros   such   as  _POSIX_SOURCE,
116         _XOPEN_SOURCE, or _SVID_SOURCE; see feature_test_macros(7).)
117
118       * The signal() function in Linux  libc4  and  libc5  provide  System  V
119         semantics.   If one on a libc5 system includes <bsd/signal.h> instead
120         of <signal.h>, then signal() provides BSD semantics.
121

SEE ALSO

123       kill(1), alarm(2), kill(2),  killpg(2),  pause(2),  sigaction(2),  sig‐
124       nalfd(2),  sigpending(2),  sigprocmask(2),  sigqueue(2), sigsuspend(2),
125       bsd_signal(3),  raise(3),  siginterrupt(3),  sigsetops(3),   sigvec(3),
126       sysv_signal(3), feature_test_macros(7), signal(7)
127

COLOPHON

129       This  page  is  part of release 3.22 of the Linux man-pages project.  A
130       description of the project, and information about reporting  bugs,  can
131       be found at http://www.kernel.org/doc/man-pages/.
132
133
134
135Linux                             2008-07-11                         SIGNAL(2)
Impressum