1Math::BigInt::Calc(3pm)Perl Programmers Reference GuideMath::BigInt::Calc(3pm)
2
3
4

NAME

6       Math::BigInt::Calc - Pure Perl module to support Math::BigInt
7

SYNOPSIS

9       This library provides support for big integer calculations. It is not
10       intended to be used by other modules. Other modules which support the
11       same API (see below) can also be used to support Math::BigInt, like
12       Math::BigInt::GMP and Math::BigInt::Pari.
13

DESCRIPTION

15       In this library, the numbers are represented in base B = 10**N, where N
16       is the largest possible value that does not cause overflow in the
17       intermediate computations. The base B elements are stored in an array,
18       with the least significant element stored in array element zero. There
19       are no leading zero elements, except a single zero element when the
20       number is zero.
21
22       For instance, if B = 10000, the number 1234567890 is represented
23       internally as [3456, 7890, 12].
24

THE Math::BigInt API

26       In order to allow for multiple big integer libraries, Math::BigInt was
27       rewritten to use a plug-in library for core math routines. Any module
28       which conforms to the API can be used by Math::BigInt by using this in
29       your program:
30
31               use Math::BigInt lib => 'libname';
32
33       'libname' is either the long name, like 'Math::BigInt::Pari', or only
34       the short version, like 'Pari'.
35
36   General Notes
37       A library only needs to deal with unsigned big integers. Testing of
38       input parameter validity is done by the caller, so there is no need to
39       worry about underflow (e.g., in "_sub()" and "_dec()") nor about
40       division by zero (e.g., in "_div()") or similar cases.
41
42       For some methods, the first parameter can be modified. That includes
43       the possibility that you return a reference to a completely different
44       object instead. Although keeping the reference and just changing its
45       contents is preferred over creating and returning a different
46       reference.
47
48       Return values are always objects, strings, Perl scalars, or true/false
49       for comparison routines.
50
51   API version 1
52       The following methods must be defined in order to support the use by
53       Math::BigInt v1.70 or later.
54
55       API version
56
57       api_version()
58           Return API version as a Perl scalar, 1 for Math::BigInt v1.70, 2
59           for Math::BigInt v1.83.
60
61       Constructors
62
63       _new(STR)
64           Convert a string representing an unsigned decimal number to an
65           object representing the same number. The input is normalize, i.e.,
66           it matches "^(0|[1-9]\d*)$".
67
68       _zero()
69           Return an object representing the number zero.
70
71       _one()
72           Return an object representing the number one.
73
74       _two()
75           Return an object representing the number two.
76
77       _ten()
78           Return an object representing the number ten.
79
80       _from_bin(STR)
81           Return an object given a string representing a binary number. The
82           input has a '0b' prefix and matches the regular expression
83           "^0[bB](0|1[01]*)$".
84
85       _from_oct(STR)
86           Return an object given a string representing an octal number. The
87           input has a '0' prefix and matches the regular expression
88           "^0[1-7]*$".
89
90       _from_hex(STR)
91           Return an object given a string representing a hexadecimal number.
92           The input has a '0x' prefix and matches the regular expression
93           "^0x(0|[1-9a-fA-F][\da-fA-F]*)$".
94
95       Mathematical functions
96
97       Each of these methods may modify the first input argument, except
98       _bgcd(), which shall not modify any input argument, and _sub() which
99       may modify the second input argument.
100
101       _add(OBJ1, OBJ2)
102           Returns the result of adding OBJ2 to OBJ1.
103
104       _mul(OBJ1, OBJ2)
105           Returns the result of multiplying OBJ2 and OBJ1.
106
107       _div(OBJ1, OBJ2)
108           Returns the result of dividing OBJ1 by OBJ2 and truncating the
109           result to an integer.
110
111       _sub(OBJ1, OBJ2, FLAG)
112       _sub(OBJ1, OBJ2)
113           Returns the result of subtracting OBJ2 by OBJ1. If "flag" is false
114           or omitted, OBJ1 might be modified. If "flag" is true, OBJ2 might
115           be modified.
116
117       _dec(OBJ)
118           Decrement OBJ by one.
119
120       _inc(OBJ)
121           Increment OBJ by one.
122
123       _mod(OBJ1, OBJ2)
124           Return OBJ1 modulo OBJ2, i.e., the remainder after dividing OBJ1 by
125           OBJ2.
126
127       _sqrt(OBJ)
128           Return the square root of the object, truncated to integer.
129
130       _root(OBJ, N)
131           Return Nth root of the object, truncated to int. N is >= 3.
132
133       _fac(OBJ)
134           Return factorial of object (1*2*3*4*...).
135
136       _pow(OBJ1, OBJ2)
137           Return OBJ1 to the power of OBJ2. By convention, 0**0 = 1.
138
139       _modinv(OBJ1, OBJ2)
140           Return modular multiplicative inverse, i.e., return OBJ3 so that
141
142               (OBJ3 * OBJ1) % OBJ2 = 1 % OBJ2
143
144           The result is returned as two arguments. If the modular
145           multiplicative inverse does not exist, both arguments are
146           undefined. Otherwise, the arguments are a number (object) and its
147           sign ("+" or "-").
148
149           The output value, with its sign, must either be a positive value in
150           the range 1,2,...,OBJ2-1 or the same value subtracted OBJ2. For
151           instance, if the input arguments are objects representing the
152           numbers 7 and 5, the method must either return an object
153           representing the number 3 and a "+" sign, since (3*7) % 5 = 1 % 5,
154           or an object representing the number 2 and "-" sign, since (-2*7) %
155           5 = 1 % 5.
156
157       _modpow(OBJ1, OBJ2, OBJ3)
158           Return modular exponentiation, (OBJ1 ** OBJ2) % OBJ3.
159
160       _rsft(OBJ, N, B)
161           Shift object N digits right in base B and return the resulting
162           object. This is equivalent to performing integer division by B**N
163           and discarding the remainder, except that it might be much faster,
164           depending on how the number is represented internally.
165
166           For instance, if the object $obj represents the hexadecimal number
167           0xabcde, then "_rsft($obj, 2, 16)" returns an object representing
168           the number 0xabc. The "remainer", 0xde, is discarded and not
169           returned.
170
171       _lsft(OBJ, N, B)
172           Shift the object N digits left in base B. This is equivalent to
173           multiplying by B**N, except that it might be much faster, depending
174           on how the number is represented internally.
175
176       _log_int(OBJ, B)
177           Return integer log of OBJ to base BASE. This method has two output
178           arguments, the OBJECT and a STATUS. The STATUS is Perl scalar; it
179           is 1 if OBJ is the exact result, 0 if the result was truncted to
180           give OBJ, and undef if it is unknown whether OBJ is the exact
181           result.
182
183       _gcd(OBJ1, OBJ2)
184           Return the greatest common divisor of OBJ1 and OBJ2.
185
186       Bitwise operators
187
188       Each of these methods may modify the first input argument.
189
190       _and(OBJ1, OBJ2)
191           Return bitwise and. If necessary, the smallest number is padded
192           with leading zeros.
193
194       _or(OBJ1, OBJ2)
195           Return bitwise or. If necessary, the smallest number is padded with
196           leading zeros.
197
198       _xor(OBJ1, OBJ2)
199           Return bitwise exclusive or. If necessary, the smallest number is
200           padded with leading zeros.
201
202       Boolean operators
203
204       _is_zero(OBJ)
205           Returns a true value if OBJ is zero, and false value otherwise.
206
207       _is_one(OBJ)
208           Returns a true value if OBJ is one, and false value otherwise.
209
210       _is_two(OBJ)
211           Returns a true value if OBJ is two, and false value otherwise.
212
213       _is_ten(OBJ)
214           Returns a true value if OBJ is ten, and false value otherwise.
215
216       _is_even(OBJ)
217           Return a true value if OBJ is an even integer, and a false value
218           otherwise.
219
220       _is_odd(OBJ)
221           Return a true value if OBJ is an even integer, and a false value
222           otherwise.
223
224       _acmp(OBJ1, OBJ2)
225           Compare OBJ1 and OBJ2 and return -1, 0, or 1, if OBJ1 is less than,
226           equal to, or larger than OBJ2, respectively.
227
228       String conversion
229
230       _str(OBJ)
231           Return a string representing the object. The returned string should
232           have no leading zeros, i.e., it should match "^(0|[1-9]\d*)$".
233
234       _as_bin(OBJ)
235           Return the binary string representation of the number. The string
236           must have a '0b' prefix.
237
238       _as_oct(OBJ)
239           Return the octal string representation of the number. The string
240           must have a '0x' prefix.
241
242           Note: This method was required from Math::BigInt version 1.78, but
243           the required API version number was not incremented, so there are
244           older libraries that support API version 1, but do not support
245           "_as_oct()".
246
247       _as_hex(OBJ)
248           Return the hexadecimal string representation of the number. The
249           string must have a '0x' prefix.
250
251       Numeric conversion
252
253       _num(OBJ)
254           Given an object, return a Perl scalar number (int/float)
255           representing this number.
256
257       Miscellaneous
258
259       _copy(OBJ)
260           Return a true copy of the object.
261
262       _len(OBJ)
263           Returns the number of the decimal digits in the number. The output
264           is a Perl scalar.
265
266       _zeros(OBJ)
267           Return the number of trailing decimal zeros. The output is a Perl
268           scalar.
269
270       _digit(OBJ, N)
271           Return the Nth digit as a Perl scalar. N is a Perl scalar, where
272           zero refers to the rightmost (least significant) digit, and
273           negative values count from the left (most significant digit). If
274           $obj represents the number 123, then _digit($obj, 0) is 3 and
275           _digit(123, -1) is 1.
276
277       _check(OBJ)
278           Return a true value if the object is OK, and a false value
279           otherwise. This is a check routine to test the internal state of
280           the object for corruption.
281
282   API version 2
283       The following methods are required for an API version of 2 or greater.
284
285       Constructors
286
287       _1ex(N)
288           Return an object representing the number 10**N where N >= 0 is a
289           Perl scalar.
290
291       Mathematical functions
292
293       _nok(OBJ1, OBJ2)
294           Return the binomial coefficient OBJ1 over OBJ1.
295
296       Miscellaneous
297
298       _alen(OBJ)
299           Return the approximate number of decimal digits of the object. The
300           output is one Perl scalar. This estimate must be greater than or
301           equal to what "_len()" returns.
302
303   API optional methods
304       The following methods are optional, and can be defined if the
305       underlying lib has a fast way to do them. If undefined, Math::BigInt
306       will use pure Perl (hence slow) fallback routines to emulate these:
307
308       Signed bitwise operators.
309
310       Each of these methods may modify the first input argument.
311
312       _signed_or(OBJ1, OBJ2, SIGN1, SIGN2)
313           Return the signed bitwise or.
314
315       _signed_and(OBJ1, OBJ2, SIGN1, SIGN2)
316           Return the signed bitwise and.
317
318       _signed_xor(OBJ1, OBJ2, SIGN1, SIGN2)
319           Return the signed bitwise exclusive or.
320

WRAP YOUR OWN

322       If you want to port your own favourite c-lib for big numbers to the
323       Math::BigInt interface, you can take any of the already existing
324       modules as a rough guideline. You should really wrap up the latest
325       BigInt and BigFloat testsuites with your module, and replace in them
326       any of the following:
327
328               use Math::BigInt;
329
330       by this:
331
332               use Math::BigInt lib => 'yourlib';
333
334       This way you ensure that your library really works 100% within
335       Math::BigInt.
336

LICENSE

338       This program is free software; you may redistribute it and/or modify it
339       under the same terms as Perl itself.
340

AUTHORS

342       ·   Original math code by Mark Biggar, rewritten by Tels
343           <http://bloodgate.com/> in late 2000.
344
345       ·   Separated from BigInt and shaped API with the help of John Peacock.
346
347       ·   Fixed, speed-up, streamlined and enhanced by Tels 2001 - 2007.
348
349       ·   API documentation corrected and extended by Peter John Acklam,
350           <pjacklam@online.no>
351

SEE ALSO

353       Math::BigInt, Math::BigFloat, Math::BigInt::GMP, Math::BigInt::FastCalc
354       and Math::BigInt::Pari.
355
356
357
358perl v5.16.3                      2013-03-04           Math::BigInt::Calc(3pm)
Impressum