1g_anaeig(1) GROMACS suite, VERSION 4.5 g_anaeig(1)
2
3
4
6 g_anaeig - analyzes the eigenvectors
7
8 VERSION 4.5
9
11 g_anaeig -v eigenvec.trr -v2 eigenvec2.trr -f traj.xtc -s topol.tpr -n
12 index.ndx -eig eigenval.xvg -eig2 eigenval2.xvg -comp eigcomp.xvg -rmsf
13 eigrmsf.xvg -proj proj.xvg -2d 2dproj.xvg -3d 3dproj.pdb -filt fil‐
14 tered.xtc -extr extreme.pdb -over overlap.xvg -inpr inprod.xpm -[no]h
15 -[no]version -nice int -b time -e time -dt time -tu enum -[no]w -xvg
16 enum -first int -last int -skip int -max real -nframes int -[no]split
17 -[no]entropy -temp real -nevskip int
18
20 g_anaeig analyzes eigenvectors. The eigenvectors can be of a covari‐
21 ance matrix ( g_covar) or of a Normal Modes analysis ( g_nmeig).
22
23
24 When a trajectory is projected on eigenvectors, all structures are fit‐
25 ted to the structure in the eigenvector file, if present, otherwise to
26 the structure in the structure file. When no run input file is sup‐
27 plied, periodicity will not be taken into account. Most analyses are
28 performed on eigenvectors -first to -last, but when -first is set to
29 -1 you will be prompted for a selection.
30
31
32 -comp: plot the vector components per atom of eigenvectors -first to
33 -last.
34
35
36 -rmsf: plot the RMS fluctuation per atom of eigenvectors -first to
37 -last (requires -eig).
38
39
40 -proj: calculate projections of a trajectory on eigenvectors -first
41 to -last. The projections of a trajectory on the eigenvectors of its
42 covariance matrix are called principal components (pc's). It is often
43 useful to check the cosine content of the pc's, since the pc's of ran‐
44 dom diffusion are cosines with the number of periods equal to half the
45 pc index. The cosine content of the pc's can be calculated with the
46 program g_analyze.
47
48
49 -2d: calculate a 2d projection of a trajectory on eigenvectors -first
50 and -last.
51
52
53 -3d: calculate a 3d projection of a trajectory on the first three
54 selected eigenvectors.
55
56
57 -filt: filter the trajectory to show only the motion along eigenvec‐
58 tors -first to -last.
59
60
61 -extr: calculate the two extreme projections along a trajectory on the
62 average structure and interpolate -nframes frames between them, or set
63 your own extremes with -max. The eigenvector -first will be written
64 unless -first and -last have been set explicitly, in which case all
65 eigenvectors will be written to separate files. Chain identifiers will
66 be added when writing a .pdb file with two or three structures (you
67 can use rasmol -nmrpdb to view such a pdb file).
68
69
70 Overlap calculations between covariance analysis:
71
72 NOTE: the analysis should use the same fitting structure
73
74
75 -over: calculate the subspace overlap of the eigenvectors in file -v2
76 with eigenvectors -first to -last in file -v.
77
78
79 -inpr: calculate a matrix of inner-products between eigenvectors in
80 files -v and -v2. All eigenvectors of both files will be used unless
81 -first and -last have been set explicitly.
82
83
84 When -v, -eig, -v2 and -eig2 are given, a single number for the
85 overlap between the covariance matrices is generated. The formulas are:
86
87 difference = sqrt(tr((sqrt(M1) - sqrt(M2))2))
88
89 normalized overlap = 1 - difference/sqrt(tr(M1) + tr(M2))
90
91 shape overlap = 1 - sqrt(tr((sqrt(M1/tr(M1)) - sqrt(M2/tr(M2)))2))
92
93 where M1 and M2 are the two covariance matrices and tr is the trace of
94 a matrix. The numbers are proportional to the overlap of the square
95 root of the fluctuations. The normalized overlap is the most useful
96 number, it is 1 for identical matrices and 0 when the sampled subspaces
97 are orthogonal.
98
99
100 When the -entropy flag is given an entropy estimate will be computed
101 based on the Quasiharmonic approach and based on Schlitter's formula.
102
104 -v eigenvec.trr Input
105 Full precision trajectory: trr trj cpt
106
107 -v2 eigenvec2.trr Input, Opt.
108 Full precision trajectory: trr trj cpt
109
110 -f traj.xtc Input, Opt.
111 Trajectory: xtc trr trj gro g96 pdb cpt
112
113 -s topol.tpr Input, Opt.
114 Structure+mass(db): tpr tpb tpa gro g96 pdb
115
116 -n index.ndx Input, Opt.
117 Index file
118
119 -eig eigenval.xvg Input, Opt.
120 xvgr/xmgr file
121
122 -eig2 eigenval2.xvg Input, Opt.
123 xvgr/xmgr file
124
125 -comp eigcomp.xvg Output, Opt.
126 xvgr/xmgr file
127
128 -rmsf eigrmsf.xvg Output, Opt.
129 xvgr/xmgr file
130
131 -proj proj.xvg Output, Opt.
132 xvgr/xmgr file
133
134 -2d 2dproj.xvg Output, Opt.
135 xvgr/xmgr file
136
137 -3d 3dproj.pdb Output, Opt.
138 Structure file: gro g96 pdb etc.
139
140 -filt filtered.xtc Output, Opt.
141 Trajectory: xtc trr trj gro g96 pdb cpt
142
143 -extr extreme.pdb Output, Opt.
144 Trajectory: xtc trr trj gro g96 pdb cpt
145
146 -over overlap.xvg Output, Opt.
147 xvgr/xmgr file
148
149 -inpr inprod.xpm Output, Opt.
150 X PixMap compatible matrix file
151
152
154 -[no]hno
155 Print help info and quit
156
157 -[no]versionno
158 Print version info and quit
159
160 -nice int 19
161 Set the nicelevel
162
163 -b time 0
164 First frame (ps) to read from trajectory
165
166 -e time 0
167 Last frame (ps) to read from trajectory
168
169 -dt time 0
170 Only use frame when t MOD dt = first time (ps)
171
172 -tu enum ps
173 Time unit: fs, ps, ns, us, ms or s
174
175 -[no]wno
176 View output xvg, xpm, eps and pdb files
177
178 -xvg enum xmgrace
179 xvg plot formatting: xmgrace, xmgr or none
180
181 -first int 1
182 First eigenvector for analysis (-1 is select)
183
184 -last int 8
185 Last eigenvector for analysis (-1 is till the last)
186
187 -skip int 1
188 Only analyse every nr-th frame
189
190 -max real 0
191 Maximum for projection of the eigenvector on the average structure,
192 max=0 gives the extremes
193
194 -nframes int 2
195 Number of frames for the extremes output
196
197 -[no]splitno
198 Split eigenvector projections where time is zero
199
200 -[no]entropyno
201 Compute entropy according to the Quasiharmonic formula or Schlitter's
202 method.
203
204 -temp real 298.15
205 Temperature for entropy calculations
206
207 -nevskip int 6
208 Number of eigenvalues to skip when computing the entropy due to the
209 quasi harmonic approximation. When you do a rotational and/or transla‐
210 tional fit prior to the covariance analysis, you get 3 or 6 eigenvalues
211 that are very close to zero, and which should not be taken into account
212 when computing the entropy.
213
214
216 gromacs(7)
217
218 More information about GROMACS is available at <http://www.gro‐
219 macs.org/>.
220
221
222
223 Thu 26 Aug 2010 g_anaeig(1)