1g_helix(1) GROMACS suite, VERSION 4.5 g_helix(1)
2
3
4
6 g_helix - calculates basic properties of alpha helices
7
8 VERSION 4.5
9
11 g_helix -s topol.tpr -n index.ndx -f traj.xtc -to gtraj.g87 -cz
12 zconf.gro -co waver.gro -[no]h -[no]version -nice int -b time -e time
13 -dt time -[no]w -r0 int -[no]q -[no]F -[no]db -prop enum -[no]ev -ahxs‐
14 tart int -ahxend int
15
17 g_helix computes all kind of helix properties. First, the peptide is
18 checked to find the longest helical part. This is determined by Hydro‐
19 gen bonds and Phi/Psi angles. That bit is fitted to an ideal helix
20 around the Z-axis and centered around the origin. Then the following
21 properties are computed:
22
23
24 1. Helix radius (file radius.xvg). This is merely the RMS deviation in
25 two dimensions for all Calpha atoms. it is calced as sqrt((SUM
26 i(x2(i)+y2(i)))/N), where N is the number of backbone atoms. For an
27 ideal helix the radius is 0.23 nm
28
29 2. Twist (file twist.xvg). The average helical angle per residue is
30 calculated. For alpha helix it is 100 degrees, for 3-10 helices it will
31 be smaller, for 5-helices it will be larger.
32
33 3. Rise per residue (file rise.xvg). The helical rise per residue is
34 plotted as the difference in Z-coordinate between Ca atoms. For an
35 ideal helix this is 0.15 nm
36
37 4. Total helix length (file len-ahx.xvg). The total length of the
38 helix in nm. This is simply the average rise (see above) times the num‐
39 ber of helical residues (see below).
40
41 5. Number of helical residues (file n-ahx.xvg). The title says it all.
42
43 6. Helix Dipole, backbone only (file dip-ahx.xvg).
44
45 7. RMS deviation from ideal helix, calculated for the Calpha atoms
46 only (file rms-ahx.xvg).
47
48 8. Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).
49
50 9. Average Phi and Psi angles (file phipsi.xvg).
51
52 10. Ellipticity at 222 nm according to Hirst and Brooks
53
54
55
57 -s topol.tpr Input
58 Run input file: tpr tpb tpa
59
60 -n index.ndx Input
61 Index file
62
63 -f traj.xtc Input
64 Trajectory: xtc trr trj gro g96 pdb cpt
65
66 -to gtraj.g87 Output, Opt.
67 Gromos-87 ASCII trajectory format
68
69 -cz zconf.gro Output
70 Structure file: gro g96 pdb etc.
71
72 -co waver.gro Output
73 Structure file: gro g96 pdb etc.
74
75
77 -[no]hno
78 Print help info and quit
79
80 -[no]versionno
81 Print version info and quit
82
83 -nice int 19
84 Set the nicelevel
85
86 -b time 0
87 First frame (ps) to read from trajectory
88
89 -e time 0
90 Last frame (ps) to read from trajectory
91
92 -dt time 0
93 Only use frame when t MOD dt = first time (ps)
94
95 -[no]wno
96 View output xvg, xpm, eps and pdb files
97
98 -r0 int 1
99 The first residue number in the sequence
100
101 -[no]qno
102 Check at every step which part of the sequence is helical
103
104 -[no]Fyes
105 Toggle fit to a perfect helix
106
107 -[no]dbno
108 Print debug info
109
110 -prop enum RAD
111 Select property to weight eigenvectors with. WARNING experimental
112 stuff: RAD, TWIST, RISE, LEN, NHX, DIP, RMS, CPHI, RMSA, PHI,
113 PSI, HB3, HB4, HB5 or CD222
114
115 -[no]evno
116 Write a new 'trajectory' file for ED
117
118 -ahxstart int 0
119 First residue in helix
120
121 -ahxend int 0
122 Last residue in helix
123
124
126 gromacs(7)
127
128 More information about GROMACS is available at <http://www.gro‐
129 macs.org/>.
130
131
132
133 Thu 26 Aug 2010 g_helix(1)