1g_helix(1)                GROMACS suite, VERSION 4.5                g_helix(1)
2
3
4

NAME

6       g_helix - calculates basic properties of alpha helices
7
8       VERSION 4.5
9

SYNOPSIS

11       g_helix  -s  topol.tpr  -n  index.ndx  -f  traj.xtc  -to  gtraj.g87 -cz
12       zconf.gro -co waver.gro -[no]h -[no]version -nice int -b time  -e  time
13       -dt time -[no]w -r0 int -[no]q -[no]F -[no]db -prop enum -[no]ev -ahxs‐
14       tart int -ahxend int
15

DESCRIPTION

17       g_helix computes all kind of helix properties. First,  the  peptide  is
18       checked  to find the longest helical part. This is determined by Hydro‐
19       gen bonds and Phi/Psi angles.  That bit is fitted  to  an  ideal  helix
20       around  the  Z-axis and centered around the origin.  Then the following
21       properties are computed:
22
23
24        1. Helix radius (file radius.xvg). This is merely the RMS deviation in
25       two  dimensions  for  all  Calpha  atoms.   it  is  calced as sqrt((SUM
26       i(x2(i)+y2(i)))/N), where N is the number of  backbone  atoms.  For  an
27       ideal helix the radius is 0.23 nm
28
29         2.  Twist  (file twist.xvg). The average helical angle per residue is
30       calculated. For alpha helix it is 100 degrees, for 3-10 helices it will
31       be smaller, for 5-helices it will be larger.
32
33         3.  Rise per residue (file rise.xvg). The helical rise per residue is
34       plotted as the difference in Z-coordinate  between  Ca  atoms.  For  an
35       ideal helix this is 0.15 nm
36
37         4.  Total  helix  length  (file len-ahx.xvg). The total length of the
38       helix in nm. This is simply the average rise (see above) times the num‐
39       ber of helical residues (see below).
40
41        5. Number of helical residues (file n-ahx.xvg). The title says it all.
42
43        6. Helix Dipole, backbone only (file dip-ahx.xvg).
44
45         7.  RMS  deviation  from ideal helix, calculated for the Calpha atoms
46       only (file rms-ahx.xvg).
47
48        8. Average Calpha-Calpha dihedral angle (file phi-ahx.xvg).
49
50        9. Average Phi and Psi angles (file phipsi.xvg).
51
52        10. Ellipticity at 222 nm according to  Hirst and Brooks
53
54
55

FILES

57       -s topol.tpr Input
58        Run input file: tpr tpb tpa
59
60       -n index.ndx Input
61        Index file
62
63       -f traj.xtc Input
64        Trajectory: xtc trr trj gro g96 pdb cpt
65
66       -to gtraj.g87 Output, Opt.
67        Gromos-87 ASCII trajectory format
68
69       -cz zconf.gro Output
70        Structure file: gro g96 pdb etc.
71
72       -co waver.gro Output
73        Structure file: gro g96 pdb etc.
74
75

OTHER OPTIONS

77       -[no]hno
78        Print help info and quit
79
80       -[no]versionno
81        Print version info and quit
82
83       -nice int 19
84        Set the nicelevel
85
86       -b time 0
87        First frame (ps) to read from trajectory
88
89       -e time 0
90        Last frame (ps) to read from trajectory
91
92       -dt time 0
93        Only use frame when t MOD dt = first time (ps)
94
95       -[no]wno
96        View output xvg, xpm, eps and pdb files
97
98       -r0 int 1
99        The first residue number in the sequence
100
101       -[no]qno
102        Check at every step which part of the sequence is helical
103
104       -[no]Fyes
105        Toggle fit to a perfect helix
106
107       -[no]dbno
108        Print debug info
109
110       -prop enum RAD
111        Select property to  weight  eigenvectors  with.  WARNING  experimental
112       stuff:  RAD,  TWIST,  RISE,  LEN,  NHX,  DIP,  RMS,  CPHI,  RMSA,  PHI,
113       PSI,  HB3,  HB4,  HB5 or  CD222
114
115       -[no]evno
116        Write a new 'trajectory' file for ED
117
118       -ahxstart int 0
119        First residue in helix
120
121       -ahxend int 0
122        Last residue in helix
123
124

SEE ALSO

126       gromacs(7)
127
128       More  information  about  GROMACS  is  available  at   <http://www.gro
129       macs.org/>.
130
131
132
133                                Thu 26 Aug 2010                     g_helix(1)
Impressum