1g_nmeig(1) GROMACS suite, VERSION 4.5 g_nmeig(1)
2
3
4
6 g_nmeig - diagonalizes the Hessian
7
8 VERSION 4.5
9
11 g_nmeig -f hessian.mtx -s topol.tpr -of eigenfreq.xvg -ol eigenval.xvg
12 -v eigenvec.trr -[no]h -[no]version -nice int -xvg enum -[no]m -first
13 int -last int
14
16 g_nmeig calculates the eigenvectors/values of a (Hessian) matrix, which
17 can be calculated with mdrun. The eigenvectors are written to a tra‐
18 jectory file ( -v). The structure is written first with t=0. The
19 eigenvectors are written as frames with the eigenvector number as time‐
20 stamp. The eigenvectors can be analyzed with g_anaeig. An ensemble
21 of structures can be generated from the eigenvectors with g_nmens.
22 When mass weighting is used, the generated eigenvectors will be scaled
23 back to plain cartesian coordinates before generating the output - in
24 this case they will no longer be exactly orthogonal in the standard
25 cartesian norm (But in the mass weighted norm they would be).
26
28 -f hessian.mtx Input
29 Hessian matrix
30
31 -s topol.tpr Input
32 Structure+mass(db): tpr tpb tpa gro g96 pdb
33
34 -of eigenfreq.xvg Output
35 xvgr/xmgr file
36
37 -ol eigenval.xvg Output
38 xvgr/xmgr file
39
40 -v eigenvec.trr Output
41 Full precision trajectory: trr trj cpt
42
43
45 -[no]hno
46 Print help info and quit
47
48 -[no]versionno
49 Print version info and quit
50
51 -nice int 19
52 Set the nicelevel
53
54 -xvg enum xmgrace
55 xvg plot formatting: xmgrace, xmgr or none
56
57 -[no]myes
58 Divide elements of Hessian by product of sqrt(mass) of involved atoms
59 prior to diagonalization. This should be used for 'Normal Modes' analy‐
60 sis
61
62 -first int 1
63 First eigenvector to write away
64
65 -last int 50
66 Last eigenvector to write away
67
68
70 gromacs(7)
71
72 More information about GROMACS is available at <http://www.gro‐
73 macs.org/>.
74
75
76
77 Thu 26 Aug 2010 g_nmeig(1)