1g_rmsf(1)                 GROMACS suite, VERSION 4.5                 g_rmsf(1)
2
3
4

NAME

6       g_rmsf - calculates atomic fluctuations
7
8       VERSION 4.5
9

SYNOPSIS

11       g_rmsf  -f traj.xtc -s topol.tpr -n index.ndx -q eiwit.pdb -oq bfac.pdb
12       -ox xaver.pdb -o rmsf.xvg -od rmsdev.xvg -oc correl.xvg  -dir  rmsf.log
13       -[no]h -[no]version -nice int -b time -e time -dt time -[no]w -xvg enum
14       -[no]res -[no]aniso -[no]fit
15

DESCRIPTION

17       g_rmsf computes the root mean square fluctuation (RMSF,  i.e.  standard
18       deviation)  of  atomic positions after (optionally) fitting to a refer‐
19       ence frame.
20
21
22       With option  -oq the RMSF values  are  converted  to  B-factor  values,
23       which  are written to a pdb file with the coordinates, of the structure
24       file, or of a pdb file when  -q is specified.  Option  -ox  writes  the
25       B-factors to a file with the average coordinates.
26
27
28       With the option  -od the root mean square deviation with respect to the
29       reference structure is calculated.
30
31
32       With the option  aniso g_rmsf will compute anisotropic temperature fac‐
33       tors  and  then  it will also output average coordinates and a pdb file
34       with ANISOU records (corresonding to the  -oq or  -ox  option).  Please
35       note  that the U values are orientation dependent, so before comparison
36       with experimental data you should verify that you fit to the experimen‐
37       tal coordinates.
38
39
40       When  a pdb input file is passed to the program and the  -aniso flag is
41       set a correlation plot of the Uij will be created, if  any  anisotropic
42       temperature factors are present in the pdb file.
43
44
45       With  option   -dir the average MSF (3x3) matrix is diagonalized.  This
46       shows the directions in which the atoms  fluctuate  the  most  and  the
47       least.
48

FILES

50       -f traj.xtc Input
51        Trajectory: xtc trr trj gro g96 pdb cpt
52
53       -s topol.tpr Input
54        Structure+mass(db): tpr tpb tpa gro g96 pdb
55
56       -n index.ndx Input, Opt.
57        Index file
58
59       -q eiwit.pdb Input, Opt.
60        Protein data bank file
61
62       -oq bfac.pdb Output, Opt.
63        Protein data bank file
64
65       -ox xaver.pdb Output, Opt.
66        Protein data bank file
67
68       -o rmsf.xvg Output
69        xvgr/xmgr file
70
71       -od rmsdev.xvg Output, Opt.
72        xvgr/xmgr file
73
74       -oc correl.xvg Output, Opt.
75        xvgr/xmgr file
76
77       -dir rmsf.log Output, Opt.
78        Log file
79
80

OTHER OPTIONS

82       -[no]hno
83        Print help info and quit
84
85       -[no]versionno
86        Print version info and quit
87
88       -nice int 19
89        Set the nicelevel
90
91       -b time 0
92        First frame (ps) to read from trajectory
93
94       -e time 0
95        Last frame (ps) to read from trajectory
96
97       -dt time 0
98        Only use frame when t MOD dt = first time (ps)
99
100       -[no]wno
101        View output xvg, xpm, eps and pdb files
102
103       -xvg enum xmgrace
104        xvg plot formatting:  xmgrace,  xmgr or  none
105
106       -[no]resno
107        Calculate averages for each residue
108
109       -[no]anisono
110        Compute anisotropic termperature factors
111
112       -[no]fityes
113        Do  a  least squares superposition before computing RMSF. Without this
114       you must make sure that the  reference  structure  and  the  trajectory
115       match.
116
117

SEE ALSO

119       gromacs(7)
120
121       More   information  about  GROMACS  is  available  at  <http://www.gro
122       macs.org/>.
123
124
125
126                                Thu 26 Aug 2010                      g_rmsf(1)
Impressum