1g_x2top(1) GROMACS suite, VERSION 4.5 g_x2top(1)
2
3
4
6 g_x2top - generates a primitive topology from coordinates
7
8 VERSION 4.5
9
11 g_x2top -f conf.gro -o out.top -r out.rtp -[no]h -[no]version -nice int
12 -ff string -[no]v -nexcl int -[no]H14 -[no]alldih -[no]remdih
13 -[no]pairs -name string -[no]pbc -[no]pdbq -[no]param -[no]round -kb
14 real -kt real -kp real
15
17 x2top generates a primitive topology from a coordinate file. The pro‐
18 gram assumes all hydrogens are present when defining the hybridization
19 from the atom name and the number of bonds. The program can also make
20 an rtp entry, which you can then add to the rtp database.
21
22
23 When -param is set, equilibrium distances and angles and force con‐
24 stants will be printed in the topology for all interactions. The equi‐
25 librium distances and angles are taken from the input coordinates, the
26 force constant are set with command line options. The force fields
27 somewhat supported currently are:
28
29
30 G53a5 GROMOS96 53a5 Forcefield (official distribution)
31
32
33 oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)
34
35
36 The corresponding data files can be found in the library directory with
37 name atomname2type.n2t. Check chapter 5 of the manual for more informa‐
38 tion about file formats. By default the forcefield selection is inter‐
39 active, but you can use the -ff option to specify one of the short
40 names above on the command line instead. In that case pdb2gmx just
41 looks for the corresponding file.
42
43
44
46 -f conf.gro Input
47 Structure file: gro g96 pdb tpr etc.
48
49 -o out.top Output, Opt.
50 Topology file
51
52 -r out.rtp Output, Opt.
53 Residue Type file used by pdb2gmx
54
55
57 -[no]hno
58 Print help info and quit
59
60 -[no]versionno
61 Print version info and quit
62
63 -nice int 0
64 Set the nicelevel
65
66 -ff string oplsaa
67 Force field for your simulation. Type "select" for interactive selec‐
68 tion.
69
70 -[no]vno
71 Generate verbose output in the top file.
72
73 -nexcl int 3
74 Number of exclusions
75
76 -[no]H14yes
77 Use 3rd neighbour interactions for hydrogen atoms
78
79 -[no]alldihno
80 Generate all proper dihedrals
81
82 -[no]remdihno
83 Remove dihedrals on the same bond as an improper
84
85 -[no]pairsyes
86 Output 1-4 interactions (pairs) in topology file
87
88 -name string ICE
89 Name of your molecule
90
91 -[no]pbcyes
92 Use periodic boundary conditions.
93
94 -[no]pdbqno
95 Use the B-factor supplied in a pdb file for the atomic charges
96
97 -[no]paramyes
98 Print parameters in the output
99
100 -[no]roundyes
101 Round off measured values
102
103 -kb real 400000
104 Bonded force constant (kJ/mol/nm2)
105
106 -kt real 400
107 Angle force constant (kJ/mol/rad2)
108
109 -kp real 5
110 Dihedral angle force constant (kJ/mol/rad2)
111
112
114 - The atom type selection is primitive. Virtually no chemical knowledge
115 is used
116
117 - Periodic boundary conditions screw up the bonding
118
119 - No improper dihedrals are generated
120
121 - The atoms to atomtype translation table is incomplete (atom‐
122 name2type.n2t files in the data directory). Please extend it and send
123 the results back to the GROMACS crew.
124
125
127 gromacs(7)
128
129 More information about GROMACS is available at <http://www.gro‐
130 macs.org/>.
131
132
133
134 Thu 26 Aug 2010 g_x2top(1)