1r.sim.sediment(1)             Grass User's Manual            r.sim.sediment(1)
2
3
4

NAME

6       r.sim.sediment   - Sediment transport and erosion/deposition simulation
7       using path sampling method (SIMWE)
8

KEYWORDS

10       raster, sediment flow, erosion, deposition
11

SYNOPSIS

13       r.sim.sediment
14       r.sim.sediment help
15       r.sim.sediment elevin=name wdepth=name dxin=name  dyin=name  detin=name
16       tranin=name tauin=name  [manin=name]   [maninval=float]   [vector=name]
17       [tc=name]    [et=name]     [conc=name]     [flux=name]     [erdep=name]
18       [nwalk=integer]    [niter=integer]   [outiter=integer]   [density=inte‐
19       ger]   [diffc=float]   [--overwrite]  [--verbose]  [--quiet]
20
21   Flags:
22       --overwrite
23           Allow output files to overwrite existing files
24
25       --verbose
26           Verbose module output
27
28       --quiet
29           Quiet module output
30
31   Parameters:
32       elevin=name
33           Name of the elevation raster map [m]
34
35       wdepth=name
36           Name of the water depth raster map [m]
37
38       dxin=name
39           Name of the x-derivatives raster map [m/m]
40
41       dyin=name
42           Name of the y-derivatives raster map [m/m]
43
44       detin=name
45           Name of the detachment capacity coefficient raster map [s/m]
46
47       tranin=name
48           Name of the transport capacity coefficient raster map [s]
49
50       tauin=name
51           Name of the critical shear stress raster map [Pa]
52
53       manin=name
54           Name of the Mannings n raster map
55
56       maninval=float
57           Name of the Mannings n value
58           Default: 0.1
59
60       vector=name
61           Name of the sampling locations vector points map
62
63       tc=name
64           Output transport capacity raster map [kg/ms]
65
66       et=name
67           Output transp.limited erosion-deposition raster map [kg/m2s]
68
69       conc=name
70           Output sediment concentration raster map [particle/m3]
71
72       flux=name
73           Output sediment flux raster map [kg/ms]
74
75       erdep=name
76           Output erosion-deposition raster map [kg/m2s]
77
78       nwalk=integer
79           Number of walkers
80
81       niter=integer
82           Time used for iterations [minutes]
83           Default: 10
84
85       outiter=integer
86           Time interval for creating output maps [minutes]
87           Default: 2
88
89       density=integer
90           Density of output walkers
91           Default: 200
92
93       diffc=float
94           Water diffusion constant
95           Default: 0.8
96

DESCRIPTION

98       r.sim.sediment is a landscape scale, simulation model of soil  erosion,
99       sediment  transport and deposition caused by flowing water designed for
100       spatially variable terrain, soil, cover and rainfall excess conditions.
101       The  soil  erosion  model  is based on the theory used in the USDA WEPP
102       hillslope erosion model, but it has been generalized to  2D  flow.  The
103       solution  is  based on the concept of duality between fields and parti‐
104       cles and the underlying equations are solved by Green's function  Monte
105       Carlo  method,  to  provide robustness necessary for spatially variable
106       conditions and high resolutions (Mitas and Mitasova 1998).  Key  inputs
107       of  the  model  include  the following raster maps: elevation (  elevin
108       [m]), flow gradient given by the  first-order  partial  derivatives  of
109       elevation  field  (  dxin and dyin), overland flow water depth ( wdepth
110       [m]), detachment capacity coefficient (detin [s/m]), transport capacity
111       coefficient  (tranin  [s]), critical shear stress (tauin [Pa]) and sur‐
112       face  roughness coefficient called  Manning's  n  (manin  raster  map).
113       Partial  derivatives  can  be  computed by v.surf.rst or r.slope.aspect
114       module. The data are automatically converted from feet to metric system
115       using  database/projection  information, so the elevation always should
116       be in meters.  The water depth file can be computed  using  r.sim.water
117       module. Other parameters must be determined using field measurements or
118       reference literature (see suggested values in Notes and References).
119
120       Output includes transport capacity raster map tc  in [kg/ms], transport
121       capacity  limited  erosion/deposition  raster map et [kg/m2s]i that are
122       output almost immediately and can be viewed while the  simulation  con‐
123       tinues.  Sediment  flow  rate  raster  map  flux  [kg/ms], and net ero‐
124       sion/deposition raster map [kg/m2s] can take longer time  depending  on
125       time  step and simulation time.  Simulation time is controled by  niter
126       [minutes] parameter.  If the resulting erosion/deposition map is noisy,
127       higher number of walkers, given by nwalk should be used.
128

NOTES

SEE ALSO

131       v.surf.rst, r.slope.aspect, r.sim.water
132

AUTHORS

134       Helena Mitasova, Lubos Mitas
135       North Carolina State University
136       hmitaso@unity.ncsu.edu
137       Jaroslav Hofierka
138       GeoModel, s.r.o. Bratislava, Slovakia
139       hofierka@geomodel.sk
140       Chris Thaxton
141       North Carolina State University
142       csthaxto@unity.ncsu.edu
143       csthaxto@unity.ncsu.edu
144

REFERENCES

146       Mitasova,  H.,  Thaxton,  C.,  Hofierka, J., McLaughlin, R., Moore, A.,
147       Mitas L., 2004, Path sampling method for modeling overland water  flow,
148       sediment transport and short term terrain evolution in Open Source GIS.
149       In: C.T. Miller, M.W. Farthing, V.G. Gray, G.F. Pinder  eds.,  Proceed‐
150       ings  of  the XVth International Conference on Computational Methods in
151       Water Resources (CMWR XV), June 13-17 2004, Chapel Hill, NC, USA, Else‐
152       vier, pp. 1479-1490.
153
154       Mitasova  H,  Mitas, L., 2000, Modeling spatial processes in multiscale
155       framework: exploring duality between particles and fields, plenary talk
156       at GIScience2000 conference, Savannah, GA.
157
158       Mitas,  L., and Mitasova, H., 1998, Distributed soil erosion simulation
159       for effective erosion  prevention.  Water  Resources  Research,  34(3),
160       505-516.
161
162       Mitasova,  H., Mitas, L., 2001, Multiscale soil erosion simulations for
163       land use management, In: Landscape erosion and landscape evolution mod‐
164       eling,  Harmon  R.  and Doe W. eds., Kluwer Academic/Plenum Publishers,
165       pp. 321-347.
166
167       Neteler, M. and Mitasova, H.,  2008,  Open  Source  GIS:  A  GRASS  GIS
168       Approach.  Third  Edition.  The International Series in Engineering and
169       Computer Science: Volume 773. Springer New York Inc, p. 406.
170
171       Last changed: $Date: 2008-02-28 13:35:40 +0100 (Thu, 28 Feb 2008) $
172
173       Full index
174
175       © 2003-2008 GRASS Development Team
176
177
178
179GRASS 6.3.0                                                  r.sim.sediment(1)
Impressum