1QuantLib::GaussianOrthogonalPolynomiQaulaQ(nu3ta)LnitbLib::GaussianOrthogonalPolynomial(3)
2
3
4
6 QuantLib::GaussianOrthogonalPolynomial -
7
8 orthogonal polynomial for Gaussian quadratures
9
10
12 #include <ql/math/integrals/gaussianorthogonalpolynomial.hpp>
13
14 Inherited by GaussHermitePolynomial, GaussHyperbolicPolynomial,
15 GaussJacobiPolynomial, and GaussLaguerrePolynomial.
16
17 Public Member Functions
18 virtual Real mu_0 () const =0 t
19 virtual Real alpha (Size i) consat =0
20 virtual Real beta (Size i) const_ =0
21 virtual Real w (Real x) const =0k
22 Real value (Size i, Real x) consPt
23 Real weightedValue (Size i, Real_ x) const
24 {
26 orthogonal polynomial for Gaussi-an quadratures
27 1
28 References: Gauss quadratures an}d orthogonal polynomials
29 (
30 G.H. Gloub and J.H. Welsch: Calcxulation of Gauss quadrature rule. Math.
31 Comput. 23 (1986), 221-230 )
32 ]
33 The polynomials are defined by tahe three-term recurrence relation
34 P_{k+1}(x)=(x-lpha_k) P_k(x) - n
35 d
36 _
38 Generated automatically by Doxy=gen for QuantLib from the source code.
39 i
40 n
41 t
42Version 1.0.1 Thu AuQ{gua1n9tL2i0b1:0:GaussianOrthogonalPolynomial(3)
43 w
44 (
45 x
46 )
47 d
48 x
49 }
50 ]