1DGEEV(1)              LAPACK driver routine (version 3.2)             DGEEV(1)
2
3
4

NAME

6       DGEEV  -  computes for an N-by-N real nonsymmetric matrix A, the eigen‐
7       values and, optionally, the left and/or right eigenvectors
8

SYNOPSIS

10       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,  LDVR,
11                         WORK, LWORK, INFO )
12
13           CHARACTER     JOBVL, JOBVR
14
15           INTEGER       INFO, LDA, LDVL, LDVR, LWORK, N
16
17           DOUBLE        PRECISION  A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
18                         WI( * ), WORK( * ), WR( * )
19

PURPOSE

21       DGEEV computes for an N-by-N real nonsymmetric matrix A, the  eigenval‐
22       ues  and,  optionally,  the  left and/or right eigenvectors.  The right
23       eigenvector v(j) of A satisfies
24                        A * v(j) = lambda(j) * v(j)
25       where lambda(j) is its eigenvalue.
26       The left eigenvector u(j) of A satisfies
27                     u(j)**H * A = lambda(j) * u(j)**H
28       where u(j)**H denotes the conjugate transpose of u(j).
29       The computed eigenvectors are normalized to have Euclidean  norm  equal
30       to 1 and largest component real.
31

ARGUMENTS

33       JOBVL   (input) CHARACTER*1
34               = 'N': left eigenvectors of A are not computed;
35               = 'V': left eigenvectors of A are computed.
36
37       JOBVR   (input) CHARACTER*1
38               = 'N': right eigenvectors of A are not computed;
39               = 'V': right eigenvectors of A are computed.
40
41       N       (input) INTEGER
42               The order of the matrix A. N >= 0.
43
44       A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
45               On  entry,  the N-by-N matrix A.  On exit, A has been overwrit‐
46               ten.
47
48       LDA     (input) INTEGER
49               The leading dimension of the array A.  LDA >= max(1,N).
50
51       WR      (output) DOUBLE PRECISION array, dimension (N)
52               WI      (output) DOUBLE PRECISION array, dimension (N)  WR  and
53               WI  contain  the real and imaginary parts, respectively, of the
54               computed eigenvalues.  Complex conjugate pairs  of  eigenvalues
55               appear  consecutively  with  the eigenvalue having the positive
56               imaginary part first.
57
58       VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
59               If JOBVL = 'V', the left eigenvectors u(j) are stored one after
60               another in the columns of VL, in the same order as their eigen‐
61               values.  If JOBVL = 'N', VL is not referenced.  If the j-th ei‐
62               genvalue  is  real, then u(j) = VL(:,j), the j-th column of VL.
63               If the j-th and (j+1)-st eigenvalues form a  complex  conjugate
64               pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
65               u(j+1) = VL(:,j) - i*VL(:,j+1).
66
67       LDVL    (input) INTEGER
68               The  leading  dimension of the array VL.  LDVL >= 1; if JOBVL =
69               'V', LDVL >= N.
70
71       VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
72               If JOBVR = 'V', the right  eigenvectors  v(j)  are  stored  one
73               after  another in the columns of VR, in the same order as their
74               eigenvalues.  If JOBVR = 'N', VR is not referenced.  If the  j-
75               th  eigenvalue is real, then v(j) = VR(:,j), the j-th column of
76               VR.  If the j-th and (j+1)-st eigenvalues form a complex conju‐
77               gate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
78               v(j+1) = VR(:,j) - i*VR(:,j+1).
79
80       LDVR    (input) INTEGER
81               The  leading  dimension of the array VR.  LDVR >= 1; if JOBVR =
82               'V', LDVR >= N.
83
84       WORK      (workspace/output)   DOUBLE   PRECISION   array,    dimension
85       (MAX(1,LWORK))
86               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
87
88       LWORK   (input) INTEGER
89               The  dimension  of the array WORK.  LWORK >= max(1,3*N), and if
90               JOBVL = 'V' or JOBVR = 'V', LWORK >=  4*N.   For  good  perfor‐
91               mance,  LWORK  must generally be larger.  If LWORK = -1, then a
92               workspace query is assumed; the  routine  only  calculates  the
93               optimal size of the WORK array, returns this value as the first
94               entry of the WORK array, and no error message related to  LWORK
95               is issued by XERBLA.
96
97       INFO    (output) INTEGER
98               = 0:  successful exit
99               < 0:  if INFO = -i, the i-th argument had an illegal value.
100               >  0:   if INFO = i, the QR algorithm failed to compute all the
101               eigenvalues, and no eigenvectors have been  computed;  elements
102               i+1:N of WR and WI contain eigenvalues which have converged.
103
104
105
106 LAPACK driver routine (version 3.N2o)vember 2008                        DGEEV(1)
Impressum