1DGEEV(1)              LAPACK driver routine (version 3.1)             DGEEV(1)
2
3
4

NAME

6       DGEEV  - for an N-by-N real nonsymmetric matrix A, the eigenvalues and,
7       optionally, the left and/or right eigenvectors
8

SYNOPSIS

10       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,  LDVR,
11                         WORK, LWORK, INFO )
12
13           CHARACTER     JOBVL, JOBVR
14
15           INTEGER       INFO, LDA, LDVL, LDVR, LWORK, N
16
17           DOUBLE        PRECISION  A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
18                         WI( * ), WORK( * ), WR( * )
19

PURPOSE

21       DGEEV computes for an N-by-N real nonsymmetric matrix A, the  eigenval‐
22       ues and, optionally, the left and/or right eigenvectors.
23
24       The right eigenvector v(j) of A satisfies
25                        A * v(j) = lambda(j) * v(j)
26       where lambda(j) is its eigenvalue.
27       The left eigenvector u(j) of A satisfies
28                     u(j)**H * A = lambda(j) * u(j)**H
29       where u(j)**H denotes the conjugate transpose of u(j).
30
31       The  computed  eigenvectors are normalized to have Euclidean norm equal
32       to 1 and largest component real.
33
34

ARGUMENTS

36       JOBVL   (input) CHARACTER*1
37               = 'N': left eigenvectors of A are not computed;
38               = 'V': left eigenvectors of A are computed.
39
40       JOBVR   (input) CHARACTER*1
41               = 'N': right eigenvectors of A are not computed;
42               = 'V': right eigenvectors of A are computed.
43
44       N       (input) INTEGER
45               The order of the matrix A. N >= 0.
46
47       A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
48               On entry, the N-by-N matrix A.  On exit, A has  been  overwrit‐
49               ten.
50
51       LDA     (input) INTEGER
52               The leading dimension of the array A.  LDA >= max(1,N).
53
54       WR      (output) DOUBLE PRECISION array, dimension (N)
55               WI       (output)  DOUBLE PRECISION array, dimension (N) WR and
56               WI contain the real and imaginary parts, respectively,  of  the
57               computed  eigenvalues.   Complex conjugate pairs of eigenvalues
58               appear consecutively with the eigenvalue  having  the  positive
59               imaginary part first.
60
61       VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
62               If JOBVL = 'V', the left eigenvectors u(j) are stored one after
63               another in the columns of VL, in the same order as their eigen‐
64               values.  If JOBVL = 'N', VL is not referenced.  If the j-th ei‐
65               genvalue is real, then u(j) = VL(:,j), the j-th column  of  VL.
66               If  the  j-th and (j+1)-st eigenvalues form a complex conjugate
67               pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
68               u(j+1) = VL(:,j) - i*VL(:,j+1).
69
70       LDVL    (input) INTEGER
71               The leading dimension of the array VL.  LDVL >= 1; if  JOBVL  =
72               'V', LDVL >= N.
73
74       VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
75               If  JOBVR  =  'V',  the  right eigenvectors v(j) are stored one
76               after another in the columns of VR, in the same order as  their
77               eigenvalues.   If JOBVR = 'N', VR is not referenced.  If the j-
78               th eigenvalue is real, then v(j) = VR(:,j), the j-th column  of
79               VR.  If the j-th and (j+1)-st eigenvalues form a complex conju‐
80               gate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
81               v(j+1) = VR(:,j) - i*VR(:,j+1).
82
83       LDVR    (input) INTEGER
84               The leading dimension of the array VR.  LDVR >= 1; if  JOBVR  =
85               'V', LDVR >= N.
86
87       WORK       (workspace/output)   DOUBLE   PRECISION   array,   dimension
88       (MAX(1,LWORK))
89               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
90
91       LWORK   (input) INTEGER
92               The dimension of the array WORK.  LWORK >= max(1,3*N),  and  if
93               JOBVL  =  'V'  or  JOBVR = 'V', LWORK >= 4*N.  For good perfor‐
94               mance, LWORK must generally be larger.
95
96               If LWORK = -1, then a workspace query is assumed;  the  routine
97               only  calculates  the  optimal  size of the WORK array, returns
98               this value as the first entry of the WORK array, and  no  error
99               message related to LWORK is issued by XERBLA.
100
101       INFO    (output) INTEGER
102               = 0:  successful exit
103               < 0:  if INFO = -i, the i-th argument had an illegal value.
104               >  0:   if INFO = i, the QR algorithm failed to compute all the
105               eigenvalues, and no eigenvectors have been  computed;  elements
106               i+1:N of WR and WI contain eigenvalues which have converged.
107
108
109
110 LAPACK driver routine (version 3.N1o)vember 2006                        DGEEV(1)
Impressum