1DGEGS(1)              LAPACK driver routine (version 3.2)             DGEGS(1)
2
3
4

NAME

6       DGEGS - routine i deprecated and has been replaced by routine DGGES
7

SYNOPSIS

9       SUBROUTINE DGEGS( JOBVSL,  JOBVSR,  N,  A, LDA, B, LDB, ALPHAR, ALPHAI,
10                         BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, INFO )
11
12           CHARACTER     JOBVSL, JOBVSR
13
14           INTEGER       INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
15
16           DOUBLE        PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( *  ),  B(
17                         LDB,  *  ), BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, *
18                         ), WORK( * )
19

PURPOSE

21       This routine is deprecated and has  been  replaced  by  routine  DGGES.
22       DGEGS  computes the eigenvalues, real Schur form, and, optionally, left
23       and or/right Schur vectors of a real  matrix  pair  (A,B).   Given  two
24       square  matrices  A and B, the generalized real Schur factorization has
25       the form
26         A = Q*S*Z**T,  B = Q*T*Z**T
27       where Q and Z are orthogonal matrices, T is upper triangular, and S  is
28       an  upper  quasi-triangular  matrix  with  1-by-1  and  2-by-2 diagonal
29       blocks, the 2-by-2 blocks corresponding to complex conjugate  pairs  of
30       eigenvalues  of (A,B).  The columns of Q are the left Schur vectors and
31       the columns of Z are the right Schur vectors.
32       If only the eigenvalues of (A,B) are needed, the driver  routine  DGEGV
33       should be used instead.  See DGEGV for a description of the eigenvalues
34       of the generalized nonsymmetric eigenvalue problem (GNEP).
35

ARGUMENTS

37       JOBVSL  (input) CHARACTER*1
38               = 'N':  do not compute the left Schur vectors;
39               = 'V':  compute the left Schur vectors (returned in VSL).
40
41       JOBVSR  (input) CHARACTER*1
42               = 'N':  do not compute the right Schur vectors;
43               = 'V':  compute the right Schur vectors (returned in VSR).
44
45       N       (input) INTEGER
46               The order of the matrices A, B, VSL, and VSR.  N >= 0.
47
48       A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
49               On entry, the matrix A.  On exit,  the  upper  quasi-triangular
50               matrix S from the generalized real Schur factorization.
51
52       LDA     (input) INTEGER
53               The leading dimension of A.  LDA >= max(1,N).
54
55       B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
56               On entry, the matrix B.  On exit, the upper triangular matrix T
57               from the generalized real Schur factorization.
58
59       LDB     (input) INTEGER
60               The leading dimension of B.  LDB >= max(1,N).
61
62       ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
63               The real parts of each scalar alpha defining an  eigenvalue  of
64               GNEP.
65
66       ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
67               The imaginary parts of each scalar alpha defining an eigenvalue
68               of GNEP.  If ALPHAI(j) is zero, then  the  j-th  eigenvalue  is
69               real; if positive, then the j-th and (j+1)-st eigenvalues are a
70               complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
71
72       BETA    (output) DOUBLE PRECISION array, dimension (N)
73               The  scalars  beta  that  define  the  eigenvalues   of   GNEP.
74               Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta
75               = BETA(j) represent the j-th  eigenvalue  of  the  matrix  pair
76               (A,B),  in  one  of  the  forms  lambda  =  alpha/beta  or mu =
77               beta/alpha.  Since either  lambda  or  mu  may  overflow,  they
78               should not, in general, be computed.
79
80       VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
81               If  JOBVSL = 'V', the matrix of left Schur vectors Q.  Not ref‐
82               erenced if JOBVSL = 'N'.
83
84       LDVSL   (input) INTEGER
85               The leading dimension of the matrix VSL. LDVSL >=1, and if JOB‐
86               VSL = 'V', LDVSL >= N.
87
88       VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
89               If JOBVSR = 'V', the matrix of right Schur vectors Z.  Not ref‐
90               erenced if JOBVSR = 'N'.
91
92       LDVSR   (input) INTEGER
93               The leading dimension of the matrix VSR. LDVSR  >=  1,  and  if
94               JOBVSR = 'V', LDVSR >= N.
95
96       WORK       (workspace/output)   DOUBLE   PRECISION   array,   dimension
97       (MAX(1,LWORK))
98               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
99
100       LWORK   (input) INTEGER
101               The dimension of the array WORK.   LWORK  >=  max(1,4*N).   For
102               good  performance,  LWORK must generally be larger.  To compute
103               the optimal value of LWORK, call ILAENV to get blocksizes  (for
104               DGEQRF,  DORMQR,  and DORGQR.)  Then compute: NB  -- MAX of the
105               blocksizes for DGEQRF, DORMQR, and DORGQR The optimal LWORK  is
106               2*N  +  N*(NB+1).   If  LWORK  =  -1, then a workspace query is
107               assumed; the routine only calculates the optimal  size  of  the
108               WORK  array,  returns this value as the first entry of the WORK
109               array, and no error message  related  to  LWORK  is  issued  by
110               XERBLA.
111
112       INFO    (output) INTEGER
113               = 0:  successful exit
114               < 0:  if INFO = -i, the i-th argument had an illegal value.
115               =  1,...,N:  The  QZ  iteration failed.  (A,B) are not in Schur
116               form, but ALPHAR(j), ALPHAI(j), and BETA(j) should  be  correct
117               for  j=INFO+1,...,N.  > N:  errors that usually indicate LAPACK
118               problems:
119               =N+1: error return from DGGBAL
120               =N+2: error return from DGEQRF
121               =N+3: error return from DORMQR
122               =N+4: error return from DORGQR
123               =N+5: error return from DGGHRD
124               =N+6: error return from DHGEQZ (other  than  failed  iteration)
125               =N+7: error return from DGGBAK (computing VSL)
126               =N+8: error return from DGGBAK (computing VSR)
127               =N+9: error return from DLASCL (various places)
128
129
130
131 LAPACK driver routine (version 3.N2o)vember 2008                        DGEGS(1)
Impressum