1DGEGS(1)              LAPACK driver routine (version 3.1)             DGEGS(1)
2
3
4

NAME

6       DGEGS - i deprecated and has been replaced by routine DGGES
7

SYNOPSIS

9       SUBROUTINE DGEGS( JOBVSL,  JOBVSR,  N,  A, LDA, B, LDB, ALPHAR, ALPHAI,
10                         BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, INFO )
11
12           CHARACTER     JOBVSL, JOBVSR
13
14           INTEGER       INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
15
16           DOUBLE        PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( *  ),  B(
17                         LDB,  *  ), BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, *
18                         ), WORK( * )
19

PURPOSE

21       This routine is deprecated and has been replaced by routine DGGES.
22
23       DGEGS computes the eigenvalues, real Schur form, and, optionally,  left
24       and  or/right  Schur  vectors  of  a real matrix pair (A,B).  Given two
25       square matrices A and B, the generalized real Schur  factorization  has
26       the form
27
28         A = Q*S*Z**T,  B = Q*T*Z**T
29
30       where  Q and Z are orthogonal matrices, T is upper triangular, and S is
31       an upper  quasi-triangular  matrix  with  1-by-1  and  2-by-2  diagonal
32       blocks,  the  2-by-2 blocks corresponding to complex conjugate pairs of
33       eigenvalues of (A,B).  The columns of Q are the left Schur vectors  and
34       the columns of Z are the right Schur vectors.
35
36       If  only  the eigenvalues of (A,B) are needed, the driver routine DGEGV
37       should be used instead.  See DGEGV for a description of the eigenvalues
38       of the generalized nonsymmetric eigenvalue problem (GNEP).
39
40

ARGUMENTS

42       JOBVSL  (input) CHARACTER*1
43               = 'N':  do not compute the left Schur vectors;
44               = 'V':  compute the left Schur vectors (returned in VSL).
45
46       JOBVSR  (input) CHARACTER*1
47               = 'N':  do not compute the right Schur vectors;
48               = 'V':  compute the right Schur vectors (returned in VSR).
49
50       N       (input) INTEGER
51               The order of the matrices A, B, VSL, and VSR.  N >= 0.
52
53       A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
54               On  entry,  the  matrix A.  On exit, the upper quasi-triangular
55               matrix S from the generalized real Schur factorization.
56
57       LDA     (input) INTEGER
58               The leading dimension of A.  LDA >= max(1,N).
59
60       B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
61               On entry, the matrix B.  On exit, the upper triangular matrix T
62               from the generalized real Schur factorization.
63
64       LDB     (input) INTEGER
65               The leading dimension of B.  LDB >= max(1,N).
66
67       ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
68               The  real  parts of each scalar alpha defining an eigenvalue of
69               GNEP.
70
71       ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
72               The imaginary parts of each scalar alpha defining an eigenvalue
73               of  GNEP.   If  ALPHAI(j)  is zero, then the j-th eigenvalue is
74               real; if positive, then the j-th and (j+1)-st eigenvalues are a
75               complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
76
77       BETA    (output) DOUBLE PRECISION array, dimension (N)
78               The   scalars   beta  that  define  the  eigenvalues  of  GNEP.
79               Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta
80               =  BETA(j)  represent  the  j-th  eigenvalue of the matrix pair
81               (A,B), in one  of  the  forms  lambda  =  alpha/beta  or  mu  =
82               beta/alpha.   Since  either  lambda  or  mu  may overflow, they
83               should not, in general, be computed.
84
85       VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
86               If JOBVSL = 'V', the matrix of left Schur vectors Q.  Not  ref‐
87               erenced if JOBVSL = 'N'.
88
89       LDVSL   (input) INTEGER
90               The leading dimension of the matrix VSL. LDVSL >=1, and if JOB‐
91               VSL = 'V', LDVSL >= N.
92
93       VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
94               If JOBVSR = 'V', the matrix of right Schur vectors Z.  Not ref‐
95               erenced if JOBVSR = 'N'.
96
97       LDVSR   (input) INTEGER
98               The  leading  dimension  of  the matrix VSR. LDVSR >= 1, and if
99               JOBVSR = 'V', LDVSR >= N.
100
101       WORK      (workspace/output)   DOUBLE   PRECISION   array,    dimension
102       (MAX(1,LWORK))
103               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
104
105       LWORK   (input) INTEGER
106               The  dimension  of  the  array WORK.  LWORK >= max(1,4*N).  For
107               good performance, LWORK must generally be larger.   To  compute
108               the  optimal value of LWORK, call ILAENV to get blocksizes (for
109               DGEQRF, DORMQR, and DORGQR.)  Then compute: NB  -- MAX  of  the
110               blocksizes  for DGEQRF, DORMQR, and DORGQR The optimal LWORK is
111               2*N + N*(NB+1).
112
113               If LWORK = -1, then a workspace query is assumed;  the  routine
114               only  calculates  the  optimal  size of the WORK array, returns
115               this value as the first entry of the WORK array, and  no  error
116               message related to LWORK is issued by XERBLA.
117
118       INFO    (output) INTEGER
119               = 0:  successful exit
120               < 0:  if INFO = -i, the i-th argument had an illegal value.
121               =  1,...,N:  The  QZ  iteration failed.  (A,B) are not in Schur
122               form, but ALPHAR(j), ALPHAI(j), and BETA(j) should  be  correct
123               for  j=INFO+1,...,N.  > N:  errors that usually indicate LAPACK
124               problems:
125               =N+1: error return from DGGBAL
126               =N+2: error return from DGEQRF
127               =N+3: error return from DORMQR
128               =N+4: error return from DORGQR
129               =N+5: error return from DGGHRD
130               =N+6: error return from DHGEQZ (other  than  failed  iteration)
131               =N+7: error return from DGGBAK (computing VSL)
132               =N+8: error return from DGGBAK (computing VSR)
133               =N+9: error return from DLASCL (various places)
134
135
136
137 LAPACK driver routine (version 3.N1o)vember 2006                        DGEGS(1)
Impressum