1DGESC2(1) LAPACK auxiliary routine (version 3.2) DGESC2(1)
2
3
4
6 DGESC2 - solves a system of linear equations A * X = scale* RHS with
7 a general N-by-N matrix A using the LU factorization with complete piv‐
8 oting computed by DGETC2
9
11 SUBROUTINE DGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
12
13 INTEGER LDA, N
14
15 DOUBLE PRECISION SCALE
16
17 INTEGER IPIV( * ), JPIV( * )
18
19 DOUBLE PRECISION A( LDA, * ), RHS( * )
20
22 DGESC2 solves a system of linear equations
23
25 N (input) INTEGER
26 The order of the matrix A.
27
28 A (input) DOUBLE PRECISION array, dimension (LDA,N)
29 On entry, the LU part of the factorization of the n-by-n
30 matrix A computed by DGETC2: A = P * L * U * Q
31
32 LDA (input) INTEGER
33 The leading dimension of the array A. LDA >= max(1, N).
34
35 RHS (input/output) DOUBLE PRECISION array, dimension (N).
36 On entry, the right hand side vector b. On exit, the solution
37 vector X.
38
39 IPIV (input) INTEGER array, dimension (N).
40 The pivot indices; for 1 <= i <= N, row i of the matrix has
41 been interchanged with row IPIV(i).
42
43 JPIV (input) INTEGER array, dimension (N).
44 The pivot indices; for 1 <= j <= N, column j of the matrix has
45 been interchanged with column JPIV(j).
46
47 SCALE (output) DOUBLE PRECISION
48 On exit, SCALE contains the scale factor. SCALE is chosen 0 <=
49 SCALE <= 1 to prevent owerflow in the solution.
50
52 Based on contributions by
53 Bo Kagstrom and Peter Poromaa, Department of Computing Science,
54 Umea University, S-901 87 Umea, Sweden.
55
56
57
58 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 DGESC2(1)