1DGESC2(1) LAPACK auxiliary routine (version 3.1) DGESC2(1)
2
3
4
6 DGESC2 - a system of linear equations A * X = scale* RHS with a gen‐
7 eral N-by-N matrix A using the LU factorization with complete pivoting
8 computed by DGETC2
9
11 SUBROUTINE DGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
12
13 INTEGER LDA, N
14
15 DOUBLE PRECISION SCALE
16
17 INTEGER IPIV( * ), JPIV( * )
18
19 DOUBLE PRECISION A( LDA, * ), RHS( * )
20
22 DGESC2 solves a system of linear equations
23
24
26 N (input) INTEGER
27 The order of the matrix A.
28
29 A (input) DOUBLE PRECISION array, dimension (LDA,N)
30 On entry, the LU part of the factorization of the n-by-n
31 matrix A computed by DGETC2: A = P * L * U * Q
32
33 LDA (input) INTEGER
34 The leading dimension of the array A. LDA >= max(1, N).
35
36 RHS (input/output) DOUBLE PRECISION array, dimension (N).
37 On entry, the right hand side vector b. On exit, the solution
38 vector X.
39
40 IPIV (input) INTEGER array, dimension (N).
41 The pivot indices; for 1 <= i <= N, row i of the matrix has
42 been interchanged with row IPIV(i).
43
44 JPIV (input) INTEGER array, dimension (N).
45 The pivot indices; for 1 <= j <= N, column j of the matrix has
46 been interchanged with column JPIV(j).
47
48 SCALE (output) DOUBLE PRECISION
49 On exit, SCALE contains the scale factor. SCALE is chosen 0 <=
50 SCALE <= 1 to prevent owerflow in the solution.
51
53 Based on contributions by
54 Bo Kagstrom and Peter Poromaa, Department of Computing Science,
55 Umea University, S-901 87 Umea, Sweden.
56
57
58
59
60 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 DGESC2(1)