1DGTRFS(1)                LAPACK routine (version 3.2)                DGTRFS(1)
2
3
4

NAME

6       DGTRFS - improves the computed solution to a system of linear equations
7       when the coefficient matrix is tridiagonal, and provides  error  bounds
8       and backward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE DGTRFS( TRANS,  N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
12                          B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
13
14           CHARACTER      TRANS
15
16           INTEGER        INFO, LDB, LDX, N, NRHS
17
18           INTEGER        IPIV( * ), IWORK( * )
19
20           DOUBLE         PRECISION B( LDB, * ), BERR( * ), D( * ), DF(  *  ),
21                          DL(  *  ),  DLF(  *  ), DU( * ), DU2( * ), DUF( * ),
22                          FERR( * ), WORK( * ), X( LDX, * )
23

PURPOSE

25       DGTRFS improves the computed solution to a system of  linear  equations
26       when  the  coefficient matrix is tridiagonal, and provides error bounds
27       and backward error estimates for the solution.
28

ARGUMENTS

30       TRANS   (input) CHARACTER*1
31               Specifies the form of the system of equations:
32               = 'N':  A * X = B     (No transpose)
33               = 'T':  A**T * X = B  (Transpose)
34               = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
35
36       N       (input) INTEGER
37               The order of the matrix A.  N >= 0.
38
39       NRHS    (input) INTEGER
40               The number of right hand sides, i.e., the number of columns  of
41               the matrix B.  NRHS >= 0.
42
43       DL      (input) DOUBLE PRECISION array, dimension (N-1)
44               The (n-1) subdiagonal elements of A.
45
46       D       (input) DOUBLE PRECISION array, dimension (N)
47               The diagonal elements of A.
48
49       DU      (input) DOUBLE PRECISION array, dimension (N-1)
50               The (n-1) superdiagonal elements of A.
51
52       DLF     (input) DOUBLE PRECISION array, dimension (N-1)
53               The (n-1) multipliers that define the matrix L from the LU fac‐
54               torization of A as computed by DGTTRF.
55
56       DF      (input) DOUBLE PRECISION array, dimension (N)
57               The n diagonal elements of the upper triangular matrix  U  from
58               the LU factorization of A.
59
60       DUF     (input) DOUBLE PRECISION array, dimension (N-1)
61               The (n-1) elements of the first superdiagonal of U.
62
63       DU2     (input) DOUBLE PRECISION array, dimension (N-2)
64               The (n-2) elements of the second superdiagonal of U.
65
66       IPIV    (input) INTEGER array, dimension (N)
67               The  pivot  indices;  for  1 <= i <= n, row i of the matrix was
68               interchanged with row IPIV(i).  IPIV(i) will always be either i
69               or  i+1;  IPIV(i)  =  i  indicates  a  row  interchange was not
70               required.
71
72       B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
73               The right hand side matrix B.
74
75       LDB     (input) INTEGER
76               The leading dimension of the array B.  LDB >= max(1,N).
77
78       X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
79               On entry, the solution matrix X, as  computed  by  DGTTRS.   On
80               exit, the improved solution matrix X.
81
82       LDX     (input) INTEGER
83               The leading dimension of the array X.  LDX >= max(1,N).
84
85       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
86               The estimated forward error bound for each solution vector X(j)
87               (the j-th column of the solution matrix X).  If  XTRUE  is  the
88               true  solution  corresponding  to X(j), FERR(j) is an estimated
89               upper bound for the magnitude of the largest element in (X(j) -
90               XTRUE) divided by the magnitude of the largest element in X(j).
91               The estimate is as reliable as the estimate for RCOND,  and  is
92               almost always a slight overestimate of the true error.
93
94       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
95               The componentwise relative backward error of each solution vec‐
96               tor X(j) (i.e., the smallest relative change in any element  of
97               A or B that makes X(j) an exact solution).
98
99       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
100
101       IWORK   (workspace) INTEGER array, dimension (N)
102
103       INFO    (output) INTEGER
104               = 0:  successful exit
105               < 0:  if INFO = -i, the i-th argument had an illegal value
106

PARAMETERS

108       ITMAX is the maximum number of steps of iterative refinement.
109
110
111
112 LAPACK routine (version 3.2)    November 2008                       DGTRFS(1)
Impressum