1DGTRFS(1)                LAPACK routine (version 3.1)                DGTRFS(1)
2
3
4

NAME

6       DGTRFS - the computed solution to a system of linear equations when the
7       coefficient matrix is tridiagonal, and provides error bounds and  back‐
8       ward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE DGTRFS( TRANS,  N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
12                          B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
13
14           CHARACTER      TRANS
15
16           INTEGER        INFO, LDB, LDX, N, NRHS
17
18           INTEGER        IPIV( * ), IWORK( * )
19
20           DOUBLE         PRECISION B( LDB, * ), BERR( * ), D( * ), DF(  *  ),
21                          DL(  *  ),  DLF(  *  ), DU( * ), DU2( * ), DUF( * ),
22                          FERR( * ), WORK( * ), X( LDX, * )
23

PURPOSE

25       DGTRFS improves the computed solution to a system of  linear  equations
26       when  the  coefficient matrix is tridiagonal, and provides error bounds
27       and backward error estimates for the solution.
28
29

ARGUMENTS

31       TRANS   (input) CHARACTER*1
32               Specifies the form of the system of equations:
33               = 'N':  A * X = B     (No transpose)
34               = 'T':  A**T * X = B  (Transpose)
35               = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
36
37       N       (input) INTEGER
38               The order of the matrix A.  N >= 0.
39
40       NRHS    (input) INTEGER
41               The number of right hand sides, i.e., the number of columns  of
42               the matrix B.  NRHS >= 0.
43
44       DL      (input) DOUBLE PRECISION array, dimension (N-1)
45               The (n-1) subdiagonal elements of A.
46
47       D       (input) DOUBLE PRECISION array, dimension (N)
48               The diagonal elements of A.
49
50       DU      (input) DOUBLE PRECISION array, dimension (N-1)
51               The (n-1) superdiagonal elements of A.
52
53       DLF     (input) DOUBLE PRECISION array, dimension (N-1)
54               The (n-1) multipliers that define the matrix L from the LU fac‐
55               torization of A as computed by DGTTRF.
56
57       DF      (input) DOUBLE PRECISION array, dimension (N)
58               The n diagonal elements of the upper triangular matrix  U  from
59               the LU factorization of A.
60
61       DUF     (input) DOUBLE PRECISION array, dimension (N-1)
62               The (n-1) elements of the first superdiagonal of U.
63
64       DU2     (input) DOUBLE PRECISION array, dimension (N-2)
65               The (n-2) elements of the second superdiagonal of U.
66
67       IPIV    (input) INTEGER array, dimension (N)
68               The  pivot  indices;  for  1 <= i <= n, row i of the matrix was
69               interchanged with row IPIV(i).  IPIV(i) will always be either i
70               or  i+1;  IPIV(i)  =  i  indicates  a  row  interchange was not
71               required.
72
73       B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
74               The right hand side matrix B.
75
76       LDB     (input) INTEGER
77               The leading dimension of the array B.  LDB >= max(1,N).
78
79       X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
80               On entry, the solution matrix X, as  computed  by  DGTTRS.   On
81               exit, the improved solution matrix X.
82
83       LDX     (input) INTEGER
84               The leading dimension of the array X.  LDX >= max(1,N).
85
86       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
87               The estimated forward error bound for each solution vector X(j)
88               (the j-th column of the solution matrix X).  If  XTRUE  is  the
89               true  solution  corresponding  to X(j), FERR(j) is an estimated
90               upper bound for the magnitude of the largest element in (X(j) -
91               XTRUE) divided by the magnitude of the largest element in X(j).
92               The estimate is as reliable as the estimate for RCOND,  and  is
93               almost always a slight overestimate of the true error.
94
95       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
96               The componentwise relative backward error of each solution vec‐
97               tor X(j) (i.e., the smallest relative change in any element  of
98               A or B that makes X(j) an exact solution).
99
100       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
101
102       IWORK   (workspace) INTEGER array, dimension (N)
103
104       INFO    (output) INTEGER
105               = 0:  successful exit
106               < 0:  if INFO = -i, the i-th argument had an illegal value
107

PARAMETERS

109       ITMAX is the maximum number of steps of iterative refinement.
110
111
112
113 LAPACK routine (version 3.1)    November 2006                       DGTRFS(1)
Impressum