1DLAGV2(1) LAPACK auxiliary routine (version 3.2) DLAGV2(1)
2
3
4
6 DLAGV2 - computes the Generalized Schur factorization of a real 2-by-2
7 matrix pencil (A,B) where B is upper triangular
8
10 SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR,
11 SNR )
12
13 INTEGER LDA, LDB
14
15 DOUBLE PRECISION CSL, CSR, SNL, SNR
16
17 DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), B(
18 LDB, * ), BETA( 2 )
19
21 DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
22 matrix pencil (A,B) where B is upper triangular. This routine computes
23 orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that
24 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
25 types), then
26 [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
27 [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
28 [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
29 [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the
30 pencil (A,B) has a pair of complex conjugate eigenvalues,
31 then
32 [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
33 [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
34 [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
35 [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
36 where b11 >= b22 > 0.
37
39 A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
40 On entry, the 2 x 2 matrix A. On exit, A is overwritten by the
41 ``A-part'' of the generalized Schur form.
42
43 LDA (input) INTEGER
44 THe leading dimension of the array A. LDA >= 2.
45
46 B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
47 On entry, the upper triangular 2 x 2 matrix B. On exit, B is
48 overwritten by the ``B-part'' of the generalized Schur form.
49
50 LDB (input) INTEGER
51 THe leading dimension of the array B. LDB >= 2.
52
53 ALPHAR (output) DOUBLE PRECISION array, dimension (2)
54 ALPHAI (output) DOUBLE PRECISION array, dimension (2) BETA
55 (output) DOUBLE PRECISION array, dimension (2)
56 (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pen‐
57 cil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero.
58
59 CSL (output) DOUBLE PRECISION
60 The cosine of the left rotation matrix.
61
62 SNL (output) DOUBLE PRECISION
63 The sine of the left rotation matrix.
64
65 CSR (output) DOUBLE PRECISION
66 The cosine of the right rotation matrix.
67
68 SNR (output) DOUBLE PRECISION
69 The sine of the right rotation matrix.
70
72 Based on contributions by
73 Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
74
75
76
77 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 DLAGV2(1)