1DLAGV2(1) LAPACK auxiliary routine (version 3.1) DLAGV2(1)
2
3
4
6 DLAGV2 - the Generalized Schur factorization of a real 2-by-2 matrix
7 pencil (A,B) where B is upper triangular
8
10 SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR,
11 SNR )
12
13 INTEGER LDA, LDB
14
15 DOUBLE PRECISION CSL, CSR, SNL, SNR
16
17 DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ), B(
18 LDB, * ), BETA( 2 )
19
21 DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
22 matrix pencil (A,B) where B is upper triangular. This routine computes
23 orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that
24
25 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
26 types), then
27
28 [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
29 [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
30
31 [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
32 [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
33
34 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
35 then
36
37 [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
38 [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
39
40 [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
41 [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
42
43 where b11 >= b22 > 0.
44
45
46
48 A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
49 On entry, the 2 x 2 matrix A. On exit, A is overwritten by the
50 ``A-part'' of the generalized Schur form.
51
52 LDA (input) INTEGER
53 THe leading dimension of the array A. LDA >= 2.
54
55 B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
56 On entry, the upper triangular 2 x 2 matrix B. On exit, B is
57 overwritten by the ``B-part'' of the generalized Schur form.
58
59 LDB (input) INTEGER
60 THe leading dimension of the array B. LDB >= 2.
61
62 ALPHAR (output) DOUBLE PRECISION array, dimension (2)
63 ALPHAI (output) DOUBLE PRECISION array, dimension (2) BETA
64 (output) DOUBLE PRECISION array, dimension (2)
65 (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pen‐
66 cil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero.
67
68 CSL (output) DOUBLE PRECISION
69 The cosine of the left rotation matrix.
70
71 SNL (output) DOUBLE PRECISION
72 The sine of the left rotation matrix.
73
74 CSR (output) DOUBLE PRECISION
75 The cosine of the right rotation matrix.
76
77 SNR (output) DOUBLE PRECISION
78 The sine of the right rotation matrix.
79
81 Based on contributions by
82 Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
83
84
85
86
87 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 DLAGV2(1)