1DLARRB(1)           LAPACK auxiliary routine (version 3.2)           DLARRB(1)
2
3
4

NAME

6       DLARRB - the relatively robust representation(RRR) L D L^T, DLARRB does
7       "limited" bisection to refine the eigenvalues of L D L^T,
8

SYNOPSIS

10       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, RTOL2,  OFFSET,  W,
11                          WGAP, WERR, WORK, IWORK, PIVMIN, SPDIAM, TWIST, INFO
12                          )
13
14           INTEGER        IFIRST, ILAST, INFO, N, OFFSET, TWIST
15
16           DOUBLE         PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM
17
18           INTEGER        IWORK( * )
19
20           DOUBLE         PRECISION D( * ), LLD( * ), W( * ), WERR( * ), WGAP(
21                          * ), WORK( * )
22

PURPOSE

24       Given  the  relatively  robust representation(RRR) L D L^T, DLARRB does
25       "limited" bisection to refine the eigenvalues of L D  L^T,  W(  IFIRST-
26       OFFSET  )  through W( ILAST-OFFSET ), to more accuracy. Initial guesses
27       for these eigenvalues are input in W, the corresponding estimate of the
28       error  in  these  guesses  and  their  gaps are input in WERR and WGAP,
29       respectively. During bisection, intervals
30       [left, right] are maintained by  storing  their  mid-points  and  semi-
31       widths in the arrays W and WERR respectively.
32

ARGUMENTS

34       N       (input) INTEGER
35               The order of the matrix.
36
37       D       (input) DOUBLE PRECISION array, dimension (N)
38               The N diagonal elements of the diagonal matrix D.
39
40       LLD     (input) DOUBLE PRECISION array, dimension (N-1)
41               The (N-1) elements L(i)*L(i)*D(i).
42
43       IFIRST  (input) INTEGER
44               The index of the first eigenvalue to be computed.
45
46       ILAST   (input) INTEGER
47               The index of the last eigenvalue to be computed.
48
49       RTOL1   (input) DOUBLE PRECISION
50               RTOL2    (input) DOUBLE PRECISION Tolerance for the convergence
51               of the bisection intervals.  An interval [LEFT,RIGHT] has  con‐
52               verged         if         RIGHT-LEFT.LT.MAX(         RTOL1*GAP,
53               RTOL2*MAX(|LEFT|,|RIGHT|) ) where GAP is the  (estimated)  dis‐
54               tance to the nearest eigenvalue.
55
56       OFFSET  (input) INTEGER
57               Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
58               through ILAST-OFFSET elements of these arrays are to be used.
59
60       W       (input/output) DOUBLE PRECISION array, dimension (N)
61               On input, W( IFIRST-OFFSET )  through  W(  ILAST-OFFSET  )  are
62               estimates  of  the eigenvalues of L D L^T indexed IFIRST throug
63               ILAST.  On output, these estimates are refined.
64
65       WGAP    (input/output) DOUBLE PRECISION array, dimension (N-1)
66               On input, the (estimated) gaps between consecutive  eigenvalues
67               of L D L^T, i.e., WGAP(I-OFFSET) is the gap between eigenvalues
68               I and I+1. Note that if IFIRST.EQ.ILAST  then  WGAP(IFIRST-OFF‐
69               SET) must be set to ZERO.  On output, these gaps are refined.
70
71       WERR    (input/output) DOUBLE PRECISION array, dimension (N)
72               On  input,  WERR(  IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
73               are the errors in the estimates of the  corresponding  elements
74               in W.  On output, these errors are refined.
75
76       WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
77               Workspace.
78
79       IWORK   (workspace) INTEGER array, dimension (2*N)
80               Workspace.
81
82       PIVMIN  (input) DOUBLE PRECISION
83               The minimum pivot in the Sturm sequence.
84
85       SPDIAM  (input) DOUBLE PRECISION
86               The spectral diameter of the matrix.
87
88       TWIST   (input) INTEGER
89               The  twist index for the twisted factorization that is used for
90               the negcount.  TWIST = N: Compute  negcount  from  L  D  L^T  -
91               LAMBDA I = L+ D+ L+^T
92               TWIST  =  1:  Compute  negcount from L D L^T - LAMBDA I = U- D-
93               U-^T
94               TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r)
95               N(r)
96
97       INFO    (output) INTEGER
98               Error flag.
99

FURTHER DETAILS

101       Based on contributions by
102          Beresford Parlett, University of California, Berkeley, USA
103          Jim Demmel, University of California, Berkeley, USA
104          Inderjit Dhillon, University of Texas, Austin, USA
105          Osni Marques, LBNL/NERSC, USA
106          Christof Voemel, University of California, Berkeley, USA
107
108
109
110 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       DLARRB(1)
Impressum