1DLARRB(1)           LAPACK auxiliary routine (version 3.1)           DLARRB(1)
2
3
4

NAME

6       DLARRB  -  relatively  robust  representation(RRR) L D L^T, DLARRB does
7       "limited" bisection to refine the eigenvalues of L D L^T,
8

SYNOPSIS

10       SUBROUTINE DLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, RTOL2,  OFFSET,  W,
11                          WGAP, WERR, WORK, IWORK, PIVMIN, SPDIAM, TWIST, INFO
12                          )
13
14           INTEGER        IFIRST, ILAST, INFO, N, OFFSET, TWIST
15
16           DOUBLE         PRECISION PIVMIN, RTOL1, RTOL2, SPDIAM
17
18           INTEGER        IWORK( * )
19
20           DOUBLE         PRECISION D( * ), LLD( * ), W( * ), WERR( * ), WGAP(
21                          * ), WORK( * )
22

PURPOSE

24       Given  the  relatively  robust representation(RRR) L D L^T, DLARRB does
25       "limited" bisection to refine the eigenvalues of L D  L^T,  W(  IFIRST-
26       OFFSET  )  through W( ILAST-OFFSET ), to more accuracy. Initial guesses
27       for these eigenvalues are input in W, the corresponding estimate of the
28       error  in  these  guesses  and  their  gaps are input in WERR and WGAP,
29       respectively. During bisection, intervals
30       [left, right] are maintained by  storing  their  mid-points  and  semi-
31       widths in the arrays W and WERR respectively.
32
33

ARGUMENTS

35       N       (input) INTEGER
36               The order of the matrix.
37
38       D       (input) DOUBLE PRECISION array, dimension (N)
39               The N diagonal elements of the diagonal matrix D.
40
41       LLD     (input) DOUBLE PRECISION array, dimension (N-1)
42               The (N-1) elements L(i)*L(i)*D(i).
43
44       IFIRST  (input) INTEGER
45               The index of the first eigenvalue to be computed.
46
47       ILAST   (input) INTEGER
48               The index of the last eigenvalue to be computed.
49
50       RTOL1   (input) DOUBLE PRECISION
51               RTOL2    (input) DOUBLE PRECISION Tolerance for the convergence
52               of the bisection intervals.  An interval [LEFT,RIGHT] has  con‐
53               verged         if         RIGHT-LEFT.LT.MAX(         RTOL1*GAP,
54               RTOL2*MAX(|LEFT|,|RIGHT|) ) where GAP is the  (estimated)  dis‐
55               tance to the nearest eigenvalue.
56
57       OFFSET  (input) INTEGER
58               Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
59               through ILAST-OFFSET elements of these arrays are to be used.
60
61       W       (input/output) DOUBLE PRECISION array, dimension (N)
62               On input, W( IFIRST-OFFSET )  through  W(  ILAST-OFFSET  )  are
63               estimates  of  the eigenvalues of L D L^T indexed IFIRST throug
64               ILAST.  On output, these estimates are refined.
65
66       WGAP    (input/output) DOUBLE PRECISION array, dimension (N-1)
67               On input, the (estimated) gaps between consecutive  eigenvalues
68               of L D L^T, i.e., WGAP(I-OFFSET) is the gap between eigenvalues
69               I and I+1. Note that if IFIRST.EQ.ILAST  then  WGAP(IFIRST-OFF‐
70               SET) must be set to ZERO.  On output, these gaps are refined.
71
72       WERR    (input/output) DOUBLE PRECISION array, dimension (N)
73               On  input,  WERR(  IFIRST-OFFSET ) through WERR( ILAST-OFFSET )
74               are the errors in the estimates of the  corresponding  elements
75               in W.  On output, these errors are refined.
76
77       WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
78               Workspace.
79
80       IWORK   (workspace) INTEGER array, dimension (2*N)
81               Workspace.
82
83       PIVMIN  (input) DOUBLE PRECISION
84               The minimum pivot in the Sturm sequence.
85
86       SPDIAM  (input) DOUBLE PRECISION
87               The spectral diameter of the matrix.
88
89       TWIST   (input) INTEGER
90               The  twist index for the twisted factorization that is used for
91               the negcount.  TWIST = N: Compute  negcount  from  L  D  L^T  -
92               LAMBDA I = L+ D+ L+^T
93               TWIST  =  1:  Compute  negcount from L D L^T - LAMBDA I = U- D-
94               U-^T
95               TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r)
96               N(r)
97
98       INFO    (output) INTEGER
99               Error flag.
100

FURTHER DETAILS

102       Based on contributions by
103          Beresford Parlett, University of California, Berkeley, USA
104          Jim Demmel, University of California, Berkeley, USA
105          Inderjit Dhillon, University of Texas, Austin, USA
106          Osni Marques, LBNL/NERSC, USA
107          Christof Voemel, University of California, Berkeley, USA
108
109
110
111
112 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLARRB(1)
Impressum