1DLARRR(1) LAPACK auxiliary routine (version 3.2) DLARRR(1)
2
3
4
6 DLARRR - tests to decide whether the symmetric tridiagonal matrix T
7 warrants expensive computations which guarantee high relative accuracy
8 in the eigenvalues
9
11 SUBROUTINE DLARRR( N, D, E, INFO )
12
13 INTEGER N, INFO
14
15 DOUBLE PRECISION D( * ), E( * )
16
18 Perform tests to decide whether the symmetric tridiagonal matrix T war‐
19 rants expensive computations which guarantee high relative accuracy in
20 the eigenvalues.
21
23 N (input) INTEGER
24 The order of the matrix. N > 0.
25
26 D (input) DOUBLE PRECISION array, dimension (N)
27 The N diagonal elements of the tridiagonal matrix T.
28
29 E (input/output) DOUBLE PRECISION array, dimension (N)
30 On entry, the first (N-1) entries contain the subdiagonal ele‐
31 ments of the tridiagonal matrix T; E(N) is set to ZERO.
32
33 INFO (output) INTEGER
34 INFO = 0(default) : the matrix warrants computations preserving
35 relative accuracy. INFO = 1 : the matrix warrants
36 computations guaranteeing only absolute accuracy.
37
39 Based on contributions by
40 Beresford Parlett, University of California, Berkeley, USA
41 Jim Demmel, University of California, Berkeley, USA
42 Inderjit Dhillon, University of Texas, Austin, USA
43 Osni Marques, LBNL/NERSC, USA
44 Christof Voemel, University of California, Berkeley, USA
45
46
47
48 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 DLARRR(1)