1DLARRR(1) LAPACK auxiliary routine (version 3.1) DLARRR(1)
2
3
4
6 DLARRR - to decide whether the symmetric tridiagonal matrix T warrants
7 expensive computations which guarantee high relative accuracy in the
8 eigenvalues
9
11 SUBROUTINE DLARRR( N, D, E, INFO )
12
13 INTEGER N, INFO
14
15 DOUBLE PRECISION D( * ), E( * )
16
18 Perform tests to decide whether the symmetric tridiagonal matrix T war‐
19 rants expensive computations which guarantee high relative accuracy in
20 the eigenvalues.
21
22
24 N (input) INTEGER
25 The order of the matrix. N > 0.
26
27 D (input) DOUBLE PRECISION array, dimension (N)
28 The N diagonal elements of the tridiagonal matrix T.
29
30 E (input/output) DOUBLE PRECISION array, dimension (N)
31 On entry, the first (N-1) entries contain the subdiagonal ele‐
32 ments of the tridiagonal matrix T; E(N) is set to ZERO.
33
34 INFO (output) INTEGER
35 INFO = 0(default) : the matrix warrants computations preserving
36 relative accuracy. INFO = 1 : the matrix warrants
37 computations guaranteeing only absolute accuracy.
38
40 Based on contributions by
41 Beresford Parlett, University of California, Berkeley, USA
42 Jim Demmel, University of California, Berkeley, USA
43 Inderjit Dhillon, University of Texas, Austin, USA
44 Osni Marques, LBNL/NERSC, USA
45 Christof Voemel, University of California, Berkeley, USA
46
47
48
49
50 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 DLARRR(1)