1DLARRV(1)           LAPACK auxiliary routine (version 3.2)           DLARRV(1)
2
3
4

NAME

6       DLARRV  -  computes  the eigenvectors of the tridiagonal matrix T = L D
7       L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T
8

SYNOPSIS

10       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL,  DOU,  MIN‐
11                          RGP,  RTOL1,  RTOL2,  W, WERR, WGAP, IBLOCK, INDEXW,
12                          GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )
13
14           INTEGER        DOL, DOU, INFO, LDZ, M, N
15
16           DOUBLE         PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
17
18           INTEGER        IBLOCK( * ), INDEXW( * ), ISPLIT( * ), ISUPPZ( *  ),
19                          IWORK( * )
20
21           DOUBLE         PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( *
22                          ), WGAP( * ), WORK( * )
23
24           DOUBLE         PRECISION Z( LDZ, * )
25

PURPOSE

27       DLARRV computes the eigenvectors of the tridiagonal matrix T = L D  L^T
28       given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.  The input
29       eigenvalues should have been computed by DLARRE.
30

ARGUMENTS

32       N       (input) INTEGER
33               The order of the matrix.  N >= 0.
34
35       VL      (input) DOUBLE PRECISION
36               VU      (input) DOUBLE PRECISION Lower and upper bounds of  the
37               interval that contains the desired eigenvalues. VL < VU. Needed
38               to compute gaps on the left or right end of the extremal eigen‐
39               values in the desired RANGE.
40
41       D       (input/output) DOUBLE PRECISION array, dimension (N)
42               On entry, the N diagonal elements of the diagonal matrix D.  On
43               exit, D may be overwritten.
44
45       L       (input/output) DOUBLE PRECISION array, dimension (N)
46               On entry, the (N-1) subdiagonal elements of the unit bidiagonal
47               matrix  L  are  in elements 1 to N-1 of L (if the matrix is not
48               splitted.) At the end of each block is stored the corresponding
49               shift as given by DLARRE.  On exit, L is overwritten.
50
51       PIVMIN  (in) DOUBLE PRECISION
52               The minimum pivot allowed in the Sturm sequence.
53
54       ISPLIT  (input) INTEGER array, dimension (N)
55               The  splitting  points,  at which T breaks up into blocks.  The
56               first block consists of rows/columns 1 to ISPLIT( 1 ), the sec‐
57               ond of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2 ), etc.
58
59       M       (input) INTEGER
60               The total number of input eigenvalues.  0 <= M <= N.
61
62       DOL     (input) INTEGER
63               DOU      (input)  INTEGER  If  the  user  wants to compute only
64               selected eigenvectors from all the eigenvalues supplied, he can
65               specify  an  index  range  DOL:DOU.  Or else the setting DOL=1,
66               DOU=M should be applied.  Note that DOL and DOU  refer  to  the
67               order  in  which  the eigenvalues are stored in W.  If the user
68               wants to compute only selected  eigenpairs,  then  the  columns
69               DOL-1  to DOU+1 of the eigenvector space Z contain the computed
70               eigenvectors. All other columns of Z are set to zero.
71
72       MINRGP  (input) DOUBLE PRECISION
73
74       RTOL1   (input) DOUBLE PRECISION
75               RTOL2   (input)  DOUBLE  PRECISION  Parameters  for  bisection.
76               RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
77
78       W       (input/output) DOUBLE PRECISION array, dimension (N)
79               The  first  M elements of W contain the APPROXIMATE eigenvalues
80               for which eigenvectors are to  be  computed.   The  eigenvalues
81               should  be grouped by split-off block and ordered from smallest
82               to largest within the block ( The output array W from DLARRE is
83               expected  here  ).  Furthermore,  they  are with respect to the
84               shift of the corresponding root representation for their block.
85               On exit, W holds the eigenvalues of the UNshifted matrix.
86
87       WERR    (input/output) DOUBLE PRECISION array, dimension (N)
88               The  first  M elements contain the semiwidth of the uncertainty
89               interval of the corresponding eigenvalue in W
90
91       WGAP    (input/output) DOUBLE PRECISION array, dimension (N)
92               The separation from the right neighbor eigenvalue in W.
93
94       IBLOCK  (input) INTEGER array, dimension (N)
95               The indices of the blocks  (submatrices)  associated  with  the
96               corresponding  eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i)
97               belongs to the first block from the top, =2 if W(i) belongs  to
98               the second block, etc.
99
100       INDEXW  (input) INTEGER array, dimension (N)
101               The  indices  of the eigenvalues within each block (submatrix);
102               for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the  i-th
103               eigenvalue W(i) is the 10-th eigenvalue in the second block.
104
105       GERS    (input) DOUBLE PRECISION array, dimension (2*N)
106               The  N  Gerschgorin intervals (the i-th Gerschgorin interval is
107               (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals  should  be
108               computed from the original UNshifted matrix.
109
110       Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
111               If  INFO  = 0, the first M columns of Z contain the orthonormal
112               eigenvectors of the matrix T corresponding to the input  eigen‐
113               values, with the i-th column of Z holding the eigenvector asso‐
114               ciated with W(i).  Note: the user must  ensure  that  at  least
115               max(1,M) columns are supplied in the array Z.
116
117       LDZ     (input) INTEGER
118               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
119               'V', LDZ >= max(1,N).
120
121       ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
122               The support of the eigenvectors in Z, i.e., the  indices  indi‐
123               cating  the  nonzero  elements  in  Z.  The I-th eigenvector is
124               nonzero only in elements ISUPPZ( 2*I-1 ) through ISUPPZ( 2*I ).
125
126       WORK    (workspace) DOUBLE PRECISION array, dimension (12*N)
127
128       IWORK   (workspace) INTEGER array, dimension (7*N)
129
130       INFO    (output) INTEGER
131               = 0:  successful exit > 0:  A problem occured in DLARRV.
132               < 0:  One of the called subroutines signaled an internal  prob‐
133               lem.  Needs inspection of the corresponding parameter IINFO for
134               further information.
135
136       =-1:  Problem in DLARRB when refining a child's eigenvalues.
137             =-2:  Problem in DLARRF when computing the RRR of a child.   When
138             a child is inside a tight cluster, it can be difficult to find an
139             RRR. A partial remedy from the user's point of view  is  to  make
140             the  parameter  MINRGP  smaller  and  recompile.  However, as the
141             orthogonality of the computed vectors is proportional  to  1/MIN‐
142             RGP,  the user should be aware that he might be trading in preci‐
143             sion when he decreases MINRGP.   =-3:   Problem  in  DLARRB  when
144             refining  a  single  eigenvalue after the Rayleigh correction was
145             rejected.  = 5:  The Rayleigh Quotient Iteration failed  to  con‐
146             verge to full accuracy in MAXITR steps.
147

FURTHER DETAILS

149       Based on contributions by
150          Beresford Parlett, University of California, Berkeley, USA
151          Jim Demmel, University of California, Berkeley, USA
152          Inderjit Dhillon, University of Texas, Austin, USA
153          Osni Marques, LBNL/NERSC, USA
154          Christof Voemel, University of California, Berkeley, USA
155
156
157
158 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       DLARRV(1)
Impressum