1DLARRV(1) LAPACK auxiliary routine (version 3.1.1) DLARRV(1)
2
3
4
6 DLARRV - the eigenvectors of the tridiagonal matrix T = L D L^T given
7 L, D and APPROXIMATIONS to the eigenvalues of L D L^T
8
10 SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MIN‐
11 RGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW,
12 GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )
13
14 INTEGER DOL, DOU, INFO, LDZ, M, N
15
16 DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
17
18 INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ), ISUPPZ( * ),
19 IWORK( * )
20
21 DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( *
22 ), WGAP( * ), WORK( * )
23
24 DOUBLE PRECISION Z( LDZ, * )
25
27 DLARRV computes the eigenvectors of the tridiagonal matrix T = L D L^T
28 given L, D and APPROXIMATIONS to the eigenvalues of L D L^T. The input
29 eigenvalues should have been computed by DLARRE.
30
31
33 N (input) INTEGER
34 The order of the matrix. N >= 0.
35
36 VL (input) DOUBLE PRECISION
37 VU (input) DOUBLE PRECISION Lower and upper bounds of the
38 interval that contains the desired eigenvalues. VL < VU. Needed
39 to compute gaps on the left or right end of the extremal eigen‐
40 values in the desired RANGE.
41
42 D (input/output) DOUBLE PRECISION array, dimension (N)
43 On entry, the N diagonal elements of the diagonal matrix D. On
44 exit, D may be overwritten.
45
46 L (input/output) DOUBLE PRECISION array, dimension (N)
47 On entry, the (N-1) subdiagonal elements of the unit bidiagonal
48 matrix L are in elements 1 to N-1 of L (if the matrix is not
49 splitted.) At the end of each block is stored the corresponding
50 shift as given by DLARRE. On exit, L is overwritten.
51
52 PIVMIN (in) DOUBLE PRECISION
53 The minimum pivot allowed in the Sturm sequence.
54
55 ISPLIT (input) INTEGER array, dimension (N)
56 The splitting points, at which T breaks up into blocks. The
57 first block consists of rows/columns 1 to ISPLIT( 1 ), the sec‐
58 ond of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2 ), etc.
59
60 M (input) INTEGER
61 The total number of input eigenvalues. 0 <= M <= N.
62
63 DOL (input) INTEGER
64 DOU (input) INTEGER If the user wants to compute only
65 selected eigenvectors from all the eigenvalues supplied, he can
66 specify an index range DOL:DOU. Or else the setting DOL=1,
67 DOU=M should be applied. Note that DOL and DOU refer to the
68 order in which the eigenvalues are stored in W. If the user
69 wants to compute only selected eigenpairs, then the columns
70 DOL-1 to DOU+1 of the eigenvector space Z contain the computed
71 eigenvectors. All other columns of Z are set to zero.
72
73 MINRGP (input) DOUBLE PRECISION
74
75 RTOL1 (input) DOUBLE PRECISION
76 RTOL2 (input) DOUBLE PRECISION Parameters for bisection.
77 RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
78
79 W (input/output) DOUBLE PRECISION array, dimension (N)
80 The first M elements of W contain the APPROXIMATE eigenvalues
81 for which eigenvectors are to be computed. The eigenvalues
82 should be grouped by split-off block and ordered from smallest
83 to largest within the block ( The output array W from DLARRE is
84 expected here ). Furthermore, they are with respect to the
85 shift of the corresponding root representation for their block.
86 On exit, W holds the eigenvalues of the UNshifted matrix.
87
88 WERR (input/output) DOUBLE PRECISION array, dimension (N)
89 The first M elements contain the semiwidth of the uncertainty
90 interval of the corresponding eigenvalue in W
91
92 WGAP (input/output) DOUBLE PRECISION array, dimension (N)
93 The separation from the right neighbor eigenvalue in W.
94
95 IBLOCK (input) INTEGER array, dimension (N)
96 The indices of the blocks (submatrices) associated with the
97 corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i)
98 belongs to the first block from the top, =2 if W(i) belongs to
99 the second block, etc.
100
101 INDEXW (input) INTEGER array, dimension (N)
102 The indices of the eigenvalues within each block (submatrix);
103 for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the i-th
104 eigenvalue W(i) is the 10-th eigenvalue in the second block.
105
106 GERS (input) DOUBLE PRECISION array, dimension (2*N)
107 The N Gerschgorin intervals (the i-th Gerschgorin interval is
108 (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should be
109 computed from the original UNshifted matrix.
110
111 Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
112 If INFO = 0, the first M columns of Z contain the orthonormal
113 eigenvectors of the matrix T corresponding to the input eigen‐
114 values, with the i-th column of Z holding the eigenvector asso‐
115 ciated with W(i). Note: the user must ensure that at least
116 max(1,M) columns are supplied in the array Z.
117
118 LDZ (input) INTEGER
119 The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
120 'V', LDZ >= max(1,N).
121
122 ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
123 The support of the eigenvectors in Z, i.e., the indices indi‐
124 cating the nonzero elements in Z. The I-th eigenvector is
125 nonzero only in elements ISUPPZ( 2*I-1 ) through ISUPPZ( 2*I ).
126
127 WORK (workspace) DOUBLE PRECISION array, dimension (12*N)
128
129 IWORK (workspace) INTEGER array, dimension (7*N)
130
131 INFO (output) INTEGER
132 = 0: successful exit
133
134 > 0: A problem occured in DLARRV.
135 < 0: One of the called subroutines signaled an internal prob‐
136 lem. Needs inspection of the corresponding parameter IINFO for
137 further information.
138
139 =-1: Problem in DLARRB when refining a child's eigenvalues.
140 =-2: Problem in DLARRF when computing the RRR of a child. When
141 a child is inside a tight cluster, it can be difficult to find an
142 RRR. A partial remedy from the user's point of view is to make
143 the parameter MINRGP smaller and recompile. However, as the
144 orthogonality of the computed vectors is proportional to 1/MIN‐
145 RGP, the user should be aware that he might be trading in preci‐
146 sion when he decreases MINRGP. =-3: Problem in DLARRB when
147 refining a single eigenvalue after the Rayleigh correction was
148 rejected. = 5: The Rayleigh Quotient Iteration failed to con‐
149 verge to full accuracy in MAXITR steps.
150
152 Based on contributions by
153 Beresford Parlett, University of California, Berkeley, USA
154 Jim Demmel, University of California, Berkeley, USA
155 Inderjit Dhillon, University of Texas, Austin, USA
156 Osni Marques, LBNL/NERSC, USA
157 Christof Voemel, University of California, Berkeley, USA
158
159
160
161
162 LAPACK auxiliary routine (versionFe3b.r1u.a1r)y 2007 DLARRV(1)