1DLARRV(1)          LAPACK auxiliary routine (version 3.1.1)          DLARRV(1)
2
3
4

NAME

6       DLARRV  -  the eigenvectors of the tridiagonal matrix T = L D L^T given
7       L, D and APPROXIMATIONS to the eigenvalues of L D L^T
8

SYNOPSIS

10       SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL,  DOU,  MIN‐
11                          RGP,  RTOL1,  RTOL2,  W, WERR, WGAP, IBLOCK, INDEXW,
12                          GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )
13
14           INTEGER        DOL, DOU, INFO, LDZ, M, N
15
16           DOUBLE         PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
17
18           INTEGER        IBLOCK( * ), INDEXW( * ), ISPLIT( * ), ISUPPZ( *  ),
19                          IWORK( * )
20
21           DOUBLE         PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( *
22                          ), WGAP( * ), WORK( * )
23
24           DOUBLE         PRECISION Z( LDZ, * )
25

PURPOSE

27       DLARRV computes the eigenvectors of the tridiagonal matrix T = L D  L^T
28       given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.  The input
29       eigenvalues should have been computed by DLARRE.
30
31

ARGUMENTS

33       N       (input) INTEGER
34               The order of the matrix.  N >= 0.
35
36       VL      (input) DOUBLE PRECISION
37               VU      (input) DOUBLE PRECISION Lower and upper bounds of  the
38               interval that contains the desired eigenvalues. VL < VU. Needed
39               to compute gaps on the left or right end of the extremal eigen‐
40               values in the desired RANGE.
41
42       D       (input/output) DOUBLE PRECISION array, dimension (N)
43               On entry, the N diagonal elements of the diagonal matrix D.  On
44               exit, D may be overwritten.
45
46       L       (input/output) DOUBLE PRECISION array, dimension (N)
47               On entry, the (N-1) subdiagonal elements of the unit bidiagonal
48               matrix  L  are  in elements 1 to N-1 of L (if the matrix is not
49               splitted.) At the end of each block is stored the corresponding
50               shift as given by DLARRE.  On exit, L is overwritten.
51
52       PIVMIN  (in) DOUBLE PRECISION
53               The minimum pivot allowed in the Sturm sequence.
54
55       ISPLIT  (input) INTEGER array, dimension (N)
56               The  splitting  points,  at which T breaks up into blocks.  The
57               first block consists of rows/columns 1 to ISPLIT( 1 ), the sec‐
58               ond of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2 ), etc.
59
60       M       (input) INTEGER
61               The total number of input eigenvalues.  0 <= M <= N.
62
63       DOL     (input) INTEGER
64               DOU      (input)  INTEGER  If  the  user  wants to compute only
65               selected eigenvectors from all the eigenvalues supplied, he can
66               specify  an  index  range  DOL:DOU.  Or else the setting DOL=1,
67               DOU=M should be applied.  Note that DOL and DOU  refer  to  the
68               order  in  which  the eigenvalues are stored in W.  If the user
69               wants to compute only selected  eigenpairs,  then  the  columns
70               DOL-1  to DOU+1 of the eigenvector space Z contain the computed
71               eigenvectors. All other columns of Z are set to zero.
72
73       MINRGP  (input) DOUBLE PRECISION
74
75       RTOL1   (input) DOUBLE PRECISION
76               RTOL2   (input)  DOUBLE  PRECISION  Parameters  for  bisection.
77               RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
78
79       W       (input/output) DOUBLE PRECISION array, dimension (N)
80               The  first  M elements of W contain the APPROXIMATE eigenvalues
81               for which eigenvectors are to  be  computed.   The  eigenvalues
82               should  be grouped by split-off block and ordered from smallest
83               to largest within the block ( The output array W from DLARRE is
84               expected  here  ).  Furthermore,  they  are with respect to the
85               shift of the corresponding root representation for their block.
86               On exit, W holds the eigenvalues of the UNshifted matrix.
87
88       WERR    (input/output) DOUBLE PRECISION array, dimension (N)
89               The  first  M elements contain the semiwidth of the uncertainty
90               interval of the corresponding eigenvalue in W
91
92       WGAP    (input/output) DOUBLE PRECISION array, dimension (N)
93               The separation from the right neighbor eigenvalue in W.
94
95       IBLOCK  (input) INTEGER array, dimension (N)
96               The indices of the blocks  (submatrices)  associated  with  the
97               corresponding  eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i)
98               belongs to the first block from the top, =2 if W(i) belongs  to
99               the second block, etc.
100
101       INDEXW  (input) INTEGER array, dimension (N)
102               The  indices  of the eigenvalues within each block (submatrix);
103               for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the  i-th
104               eigenvalue W(i) is the 10-th eigenvalue in the second block.
105
106       GERS    (input) DOUBLE PRECISION array, dimension (2*N)
107               The  N  Gerschgorin intervals (the i-th Gerschgorin interval is
108               (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals  should  be
109               computed from the original UNshifted matrix.
110
111       Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
112               If  INFO  = 0, the first M columns of Z contain the orthonormal
113               eigenvectors of the matrix T corresponding to the input  eigen‐
114               values, with the i-th column of Z holding the eigenvector asso‐
115               ciated with W(i).  Note: the user must  ensure  that  at  least
116               max(1,M) columns are supplied in the array Z.
117
118       LDZ     (input) INTEGER
119               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
120               'V', LDZ >= max(1,N).
121
122       ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
123               The support of the eigenvectors in Z, i.e., the  indices  indi‐
124               cating  the  nonzero  elements  in  Z.  The I-th eigenvector is
125               nonzero only in elements ISUPPZ( 2*I-1 ) through ISUPPZ( 2*I ).
126
127       WORK    (workspace) DOUBLE PRECISION array, dimension (12*N)
128
129       IWORK   (workspace) INTEGER array, dimension (7*N)
130
131       INFO    (output) INTEGER
132               = 0:  successful exit
133
134               > 0:  A problem occured in DLARRV.
135               < 0:  One of the called subroutines signaled an internal  prob‐
136               lem.  Needs inspection of the corresponding parameter IINFO for
137               further information.
138
139       =-1:  Problem in DLARRB when refining a child's eigenvalues.
140             =-2:  Problem in DLARRF when computing the RRR of a child.   When
141             a child is inside a tight cluster, it can be difficult to find an
142             RRR. A partial remedy from the user's point of view  is  to  make
143             the  parameter  MINRGP  smaller  and  recompile.  However, as the
144             orthogonality of the computed vectors is proportional  to  1/MIN‐
145             RGP,  the user should be aware that he might be trading in preci‐
146             sion when he decreases MINRGP.   =-3:   Problem  in  DLARRB  when
147             refining  a  single  eigenvalue after the Rayleigh correction was
148             rejected.  = 5:  The Rayleigh Quotient Iteration failed  to  con‐
149             verge to full accuracy in MAXITR steps.
150

FURTHER DETAILS

152       Based on contributions by
153          Beresford Parlett, University of California, Berkeley, USA
154          Jim Demmel, University of California, Berkeley, USA
155          Inderjit Dhillon, University of Texas, Austin, USA
156          Osni Marques, LBNL/NERSC, USA
157          Christof Voemel, University of California, Berkeley, USA
158
159
160
161
162 LAPACK auxiliary routine (versionFe3b.r1u.a1r)y 2007                       DLARRV(1)
Impressum