1DLASD3(1)           LAPACK auxiliary routine (version 3.2)           DLASD3(1)
2
3
4

NAME

6       DLASD3  -  finds all the square roots of the roots of the secular equa‐
7       tion, as defined by the values in D and Z
8

SYNOPSIS

10       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q,  LDQ,  DSIGMA,  U,  LDU,  U2,
11                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, INFO )
12
13           INTEGER        INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
14
15           INTEGER        CTOT( * ), IDXC( * )
16
17           DOUBLE         PRECISION  D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU,
18                          * ), U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, *  ),
19                          Z( * )
20

PURPOSE

22       DLASD3 finds all the square roots of the roots of the secular equation,
23       as defined by the values in D and Z.  It makes the appropriate calls to
24       DLASD4 and then updates the singular vectors by matrix multiplication.
25       This  code makes very mild assumptions about floating point arithmetic.
26       It will work on machines with a guard  digit  in  add/subtract,  or  on
27       those binary machines without guard digits which subtract like the Cray
28       XMP, Cray YMP, Cray C 90, or Cray 2.   It  could  conceivably  fail  on
29       hexadecimal  or  decimal  machines without guard digits, but we know of
30       none.
31       DLASD3 is called from DLASD1.
32

ARGUMENTS

34       NL     (input) INTEGER
35              The row dimension of the upper block.  NL >= 1.
36
37       NR     (input) INTEGER
38              The row dimension of the lower block.  NR >= 1.
39
40       SQRE   (input) INTEGER
41              = 0: the lower block is an NR-by-NR square matrix.
42              = 1: the lower block is an NR-by-(NR+1) rectangular matrix.  The
43              bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE >= N
44              columns.
45
46       K      (input) INTEGER
47              The size of the secular equation, 1 =< K = < N.
48
49       D      (output) DOUBLE PRECISION array, dimension(K)
50              On exit the square roots of the roots of the  secular  equation,
51              in ascending order.
52
53       Q      (workspace) DOUBLE PRECISION array,
54              dimension at least (LDQ,K).
55
56       LDQ    (input) INTEGER
57              The leading dimension of the array Q.  LDQ >= K.  DSIGMA (input)
58              DOUBLE PRECISION array, dimension(K) The  first  K  elements  of
59              this  array contain the old roots of the deflated updating prob‐
60              lem.  These are the poles of the secular equation.
61
62       U      (output) DOUBLE PRECISION array, dimension (LDU, N)
63              The last N - K columns of this matrix contain the deflated  left
64              singular vectors.
65
66       LDU    (input) INTEGER
67              The leading dimension of the array U.  LDU >= N.
68
69       U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
70              The first K columns of this matrix contain the non-deflated left
71              singular vectors for the split problem.
72
73       LDU2   (input) INTEGER
74              The leading dimension of the array U2.  LDU2 >= N.
75
76       VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
77              The last M - K columns of VT' contain the deflated right  singu‐
78              lar vectors.
79
80       LDVT   (input) INTEGER
81              The leading dimension of the array VT.  LDVT >= N.
82
83       VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
84              The  first K columns of VT2' contain the non-deflated right sin‐
85              gular vectors for the split problem.
86
87       LDVT2  (input) INTEGER
88              The leading dimension of the array VT2.  LDVT2 >= N.
89
90       IDXC   (input) INTEGER array, dimension ( N )
91              The permutation used to arrange the columns of U  (and  rows  of
92              VT)  into  three  groups:   the  first  group  contains non-zero
93              entries only at and above (or before) NL +1; the second contains
94              non-zero  entries  only  at  and  below (or after) NL+2; and the
95              third is dense. The first column of U and  the  row  of  VT  are
96              treated  separately,  however.  The rows of the singular vectors
97              found by DLASD4 must be likewise permuted before the matrix mul‐
98              tiplies can take place.
99
100       CTOT   (input) INTEGER array, dimension ( 4 )
101              A count of the total number of the various types of columns in U
102              (or rows in VT), as described in IDXC. The fourth column type is
103              any column which has been deflated.
104
105       Z      (input) DOUBLE PRECISION array, dimension (K)
106              The first K elements of this array contain the components of the
107              deflation-adjusted updating row vector.
108
109       INFO   (output) INTEGER
110              = 0:  successful exit.
111              < 0:  if INFO = -i, the i-th argument had an illegal value.
112              > 0:  if INFO = 1, an singular value did not converge
113

FURTHER DETAILS

115       Based on contributions by
116          Ming Gu and Huan Ren, Computer Science Division, University of
117          California at Berkeley, USA
118
119
120
121 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       DLASD3(1)
Impressum