1DLASD3(1)           LAPACK auxiliary routine (version 3.1)           DLASD3(1)
2
3
4

NAME

6       DLASD3  - all the square roots of the roots of the secular equation, as
7       defined by the values in D and Z
8

SYNOPSIS

10       SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q,  LDQ,  DSIGMA,  U,  LDU,  U2,
11                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, INFO )
12
13           INTEGER        INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
14
15           INTEGER        CTOT( * ), IDXC( * )
16
17           DOUBLE         PRECISION  D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU,
18                          * ), U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, *  ),
19                          Z( * )
20

PURPOSE

22       DLASD3 finds all the square roots of the roots of the secular equation,
23       as defined by the values in D and Z.  It makes the appropriate calls to
24       DLASD4 and then updates the singular vectors by matrix multiplication.
25
26       This  code makes very mild assumptions about floating point arithmetic.
27       It will work on machines with a guard  digit  in  add/subtract,  or  on
28       those binary machines without guard digits which subtract like the Cray
29       XMP, Cray YMP, Cray C 90, or Cray 2.   It  could  conceivably  fail  on
30       hexadecimal  or  decimal  machines without guard digits, but we know of
31       none.
32
33       DLASD3 is called from DLASD1.
34
35

ARGUMENTS

37       NL     (input) INTEGER
38              The row dimension of the upper block.  NL >= 1.
39
40       NR     (input) INTEGER
41              The row dimension of the lower block.  NR >= 1.
42
43       SQRE   (input) INTEGER
44              = 0: the lower block is an NR-by-NR square matrix.
45              = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
46
47              The bidiagonal matrix has N = NL + NR + 1 rows and M = N +  SQRE
48              >= N columns.
49
50       K      (input) INTEGER
51              The size of the secular equation, 1 =< K = < N.
52
53       D      (output) DOUBLE PRECISION array, dimension(K)
54              On  exit  the square roots of the roots of the secular equation,
55              in ascending order.
56
57       Q      (workspace) DOUBLE PRECISION array,
58              dimension at least (LDQ,K).
59
60       LDQ    (input) INTEGER
61              The leading dimension of the array Q.  LDQ >= K.
62
63              DSIGMA (input) DOUBLE PRECISION array, dimension(K) The first  K
64              elements  of  this  array  contain the old roots of the deflated
65              updating problem.  These are the poles of the secular equation.
66
67       U      (output) DOUBLE PRECISION array, dimension (LDU, N)
68              The last N - K columns of this matrix contain the deflated  left
69              singular vectors.
70
71       LDU    (input) INTEGER
72              The leading dimension of the array U.  LDU >= N.
73
74       U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
75              The first K columns of this matrix contain the non-deflated left
76              singular vectors for the split problem.
77
78       LDU2   (input) INTEGER
79              The leading dimension of the array U2.  LDU2 >= N.
80
81       VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
82              The last M - K columns of VT' contain the deflated right  singu‐
83              lar vectors.
84
85       LDVT   (input) INTEGER
86              The leading dimension of the array VT.  LDVT >= N.
87
88       VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
89              The  first K columns of VT2' contain the non-deflated right sin‐
90              gular vectors for the split problem.
91
92       LDVT2  (input) INTEGER
93              The leading dimension of the array VT2.  LDVT2 >= N.
94
95       IDXC   (input) INTEGER array, dimension ( N )
96              The permutation used to arrange the columns of U  (and  rows  of
97              VT)  into  three  groups:   the  first  group  contains non-zero
98              entries only at and above (or before) NL +1; the second contains
99              non-zero  entries  only  at  and  below (or after) NL+2; and the
100              third is dense. The first column of U and  the  row  of  VT  are
101              treated separately, however.
102
103              The  rows  of the singular vectors found by DLASD4 must be like‐
104              wise permuted before the matrix multiplies can take place.
105
106       CTOT   (input) INTEGER array, dimension ( 4 )
107              A count of the total number of the various types of columns in U
108              (or rows in VT), as described in IDXC. The fourth column type is
109              any column which has been deflated.
110
111       Z      (input) DOUBLE PRECISION array, dimension (K)
112              The first K elements of this array contain the components of the
113              deflation-adjusted updating row vector.
114
115       INFO   (output) INTEGER
116              = 0:  successful exit.
117              < 0:  if INFO = -i, the i-th argument had an illegal value.
118              > 0:  if INFO = 1, an singular value did not converge
119

FURTHER DETAILS

121       Based on contributions by
122          Ming Gu and Huan Ren, Computer Science Division, University of
123          California at Berkeley, USA
124
125
126
127
128 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLASD3(1)
Impressum