1DORGRQ(1) LAPACK routine (version 3.2) DORGRQ(1)
2
3
4
6 DORGRQ - generates an M-by-N real matrix Q with orthonormal rows,
7
9 SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
10
11 INTEGER INFO, K, LDA, LWORK, M, N
12
13 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
14
16 DORGRQ generates an M-by-N real matrix Q with orthonormal rows, which
17 is defined as the last M rows of a product of K elementary reflectors
18 of order N
19 Q = H(1) H(2) . . . H(k)
20 as returned by DGERQF.
21
23 M (input) INTEGER
24 The number of rows of the matrix Q. M >= 0.
25
26 N (input) INTEGER
27 The number of columns of the matrix Q. N >= M.
28
29 K (input) INTEGER
30 The number of elementary reflectors whose product defines the
31 matrix Q. M >= K >= 0.
32
33 A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
34 On entry, the (m-k+i)-th row must contain the vector which
35 defines the elementary reflector H(i), for i = 1,2,...,k, as
36 returned by DGERQF in the last k rows of its array argument A.
37 On exit, the M-by-N matrix Q.
38
39 LDA (input) INTEGER
40 The first dimension of the array A. LDA >= max(1,M).
41
42 TAU (input) DOUBLE PRECISION array, dimension (K)
43 TAU(i) must contain the scalar factor of the elementary reflec‐
44 tor H(i), as returned by DGERQF.
45
46 WORK (workspace/output) DOUBLE PRECISION array, dimension
47 (MAX(1,LWORK))
48 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
49
50 LWORK (input) INTEGER
51 The dimension of the array WORK. LWORK >= max(1,M). For opti‐
52 mum performance LWORK >= M*NB, where NB is the optimal block‐
53 size. If LWORK = -1, then a workspace query is assumed; the
54 routine only calculates the optimal size of the WORK array,
55 returns this value as the first entry of the WORK array, and no
56 error message related to LWORK is issued by XERBLA.
57
58 INFO (output) INTEGER
59 = 0: successful exit
60 < 0: if INFO = -i, the i-th argument has an illegal value
61
62
63
64 LAPACK routine (version 3.2) November 2008 DORGRQ(1)