1DORGRQ(1) LAPACK routine (version 3.1) DORGRQ(1)
2
3
4
6 DORGRQ - an M-by-N real matrix Q with orthonormal rows,
7
9 SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
10
11 INTEGER INFO, K, LDA, LWORK, M, N
12
13 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
14
16 DORGRQ generates an M-by-N real matrix Q with orthonormal rows, which
17 is defined as the last M rows of a product of K elementary reflectors
18 of order N
19
20 Q = H(1) H(2) . . . H(k)
21
22 as returned by DGERQF.
23
24
26 M (input) INTEGER
27 The number of rows of the matrix Q. M >= 0.
28
29 N (input) INTEGER
30 The number of columns of the matrix Q. N >= M.
31
32 K (input) INTEGER
33 The number of elementary reflectors whose product defines the
34 matrix Q. M >= K >= 0.
35
36 A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
37 On entry, the (m-k+i)-th row must contain the vector which
38 defines the elementary reflector H(i), for i = 1,2,...,k, as
39 returned by DGERQF in the last k rows of its array argument A.
40 On exit, the M-by-N matrix Q.
41
42 LDA (input) INTEGER
43 The first dimension of the array A. LDA >= max(1,M).
44
45 TAU (input) DOUBLE PRECISION array, dimension (K)
46 TAU(i) must contain the scalar factor of the elementary reflec‐
47 tor H(i), as returned by DGERQF.
48
49 WORK (workspace/output) DOUBLE PRECISION array, dimension
50 (MAX(1,LWORK))
51 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
52
53 LWORK (input) INTEGER
54 The dimension of the array WORK. LWORK >= max(1,M). For opti‐
55 mum performance LWORK >= M*NB, where NB is the optimal block‐
56 size.
57
58 If LWORK = -1, then a workspace query is assumed; the routine
59 only calculates the optimal size of the WORK array, returns
60 this value as the first entry of the WORK array, and no error
61 message related to LWORK is issued by XERBLA.
62
63 INFO (output) INTEGER
64 = 0: successful exit
65 < 0: if INFO = -i, the i-th argument has an illegal value
66
67
68
69 LAPACK routine (version 3.1) November 2006 DORGRQ(1)