1DPBTRS(1) LAPACK routine (version 3.2) DPBTRS(1)
2
3
4
6 DPBTRS - solves a system of linear equations A*X = B with a symmetric
7 positive definite band matrix A using the Cholesky factorization A =
8 U**T*U or A = L*L**T computed by DPBTRF
9
11 SUBROUTINE DPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
12
13 CHARACTER UPLO
14
15 INTEGER INFO, KD, LDAB, LDB, N, NRHS
16
17 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
18
20 DPBTRS solves a system of linear equations A*X = B with a symmetric
21 positive definite band matrix A using the Cholesky factorization A =
22 U**T*U or A = L*L**T computed by DPBTRF.
23
25 UPLO (input) CHARACTER*1
26 = 'U': Upper triangular factor stored in AB;
27 = 'L': Lower triangular factor stored in AB.
28
29 N (input) INTEGER
30 The order of the matrix A. N >= 0.
31
32 KD (input) INTEGER
33 The number of superdiagonals of the matrix A if UPLO = 'U', or
34 the number of subdiagonals if UPLO = 'L'. KD >= 0.
35
36 NRHS (input) INTEGER
37 The number of right hand sides, i.e., the number of columns of
38 the matrix B. NRHS >= 0.
39
40 AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
41 The triangular factor U or L from the Cholesky factorization A
42 = U**T*U or A = L*L**T of the band matrix A, stored in the
43 first KD+1 rows of the array. The j-th column of U or L is
44 stored in the j-th column of the array AB as follows: if UPLO
45 ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO
46 ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
47
48 LDAB (input) INTEGER
49 The leading dimension of the array AB. LDAB >= KD+1.
50
51 B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
52 On entry, the right hand side matrix B. On exit, the solution
53 matrix X.
54
55 LDB (input) INTEGER
56 The leading dimension of the array B. LDB >= max(1,N).
57
58 INFO (output) INTEGER
59 = 0: successful exit
60 < 0: if INFO = -i, the i-th argument had an illegal value
61
62
63
64 LAPACK routine (version 3.2) November 2008 DPBTRS(1)