1DPBTRS(1) LAPACK routine (version 3.1) DPBTRS(1)
2
3
4
6 DPBTRS - a system of linear equations A*X = B with a symmetric positive
7 definite band matrix A using the Cholesky factorization A = U**T*U or A
8 = L*L**T computed by DPBTRF
9
11 SUBROUTINE DPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
12
13 CHARACTER UPLO
14
15 INTEGER INFO, KD, LDAB, LDB, N, NRHS
16
17 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
18
20 DPBTRS solves a system of linear equations A*X = B with a symmetric
21 positive definite band matrix A using the Cholesky factorization A =
22 U**T*U or A = L*L**T computed by DPBTRF.
23
24
26 UPLO (input) CHARACTER*1
27 = 'U': Upper triangular factor stored in AB;
28 = 'L': Lower triangular factor stored in AB.
29
30 N (input) INTEGER
31 The order of the matrix A. N >= 0.
32
33 KD (input) INTEGER
34 The number of superdiagonals of the matrix A if UPLO = 'U', or
35 the number of subdiagonals if UPLO = 'L'. KD >= 0.
36
37 NRHS (input) INTEGER
38 The number of right hand sides, i.e., the number of columns of
39 the matrix B. NRHS >= 0.
40
41 AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
42 The triangular factor U or L from the Cholesky factorization A
43 = U**T*U or A = L*L**T of the band matrix A, stored in the
44 first KD+1 rows of the array. The j-th column of U or L is
45 stored in the j-th column of the array AB as follows: if UPLO
46 ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO
47 ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
48
49 LDAB (input) INTEGER
50 The leading dimension of the array AB. LDAB >= KD+1.
51
52 B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
53 On entry, the right hand side matrix B. On exit, the solution
54 matrix X.
55
56 LDB (input) INTEGER
57 The leading dimension of the array B. LDB >= max(1,N).
58
59 INFO (output) INTEGER
60 = 0: successful exit
61 < 0: if INFO = -i, the i-th argument had an illegal value
62
63
64
65 LAPACK routine (version 3.1) November 2006 DPBTRS(1)