1DSPGV(1)              LAPACK driver routine (version 3.2)             DSPGV(1)
2
3
4

NAME

6       DSPGV  - computes all the eigenvalues and, optionally, the eigenvectors
7       of a real generalized  symmetric-definite  eigenproblem,  of  the  form
8       A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
9

SYNOPSIS

11       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )
12
13           CHARACTER     JOBZ, UPLO
14
15           INTEGER       INFO, ITYPE, LDZ, N
16
17           DOUBLE        PRECISION  AP(  *  ),  BP( * ), W( * ), WORK( * ), Z(
18                         LDZ, * )
19

PURPOSE

21       DSPGV computes all the eigenvalues and, optionally, the eigenvectors of
22       a   real  generalized  symmetric-definite  eigenproblem,  of  the  form
23       A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and B
24       are  assumed  to  be  symmetric, stored in packed format, and B is also
25       positive definite.
26

ARGUMENTS

28       ITYPE   (input) INTEGER
29               Specifies the problem type to be solved:
30               = 1:  A*x = (lambda)*B*x
31               = 2:  A*B*x = (lambda)*x
32               = 3:  B*A*x = (lambda)*x
33
34       JOBZ    (input) CHARACTER*1
35               = 'N':  Compute eigenvalues only;
36               = 'V':  Compute eigenvalues and eigenvectors.
37
38       UPLO    (input) CHARACTER*1
39               = 'U':  Upper triangles of A and B are stored;
40               = 'L':  Lower triangles of A and B are stored.
41
42       N       (input) INTEGER
43               The order of the matrices A and B.  N >= 0.
44
45       AP      (input/output) DOUBLE PRECISION array, dimension
46               (N*(N+1)/2) On entry, the upper or lower triangle of  the  sym‐
47               metric matrix A, packed columnwise in a linear array.  The j-th
48               column of A is stored in the array AP as  follows:  if  UPLO  =
49               'U',  AP(i  +  (j-1)*j/2)  = A(i,j) for 1<=i<=j; if UPLO = 'L',
50               AP(i + (j-1)*(2*n-j)/2) = A(i,j) for  j<=i<=n.   On  exit,  the
51               contents of AP are destroyed.
52
53       BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
54               On  entry,  the upper or lower triangle of the symmetric matrix
55               B, packed columnwise in a linear array.  The j-th column  of  B
56               is  stored  in  the  array BP as follows: if UPLO = 'U', BP(i +
57               (j-1)*j/2) =  B(i,j)  for  1<=i<=j;  if  UPLO  =  'L',  BP(i  +
58               (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.  On exit, the triangular
59               factor U or L from the Cholesky factorization B = U**T*U or B =
60               L*L**T, in the same storage format as B.
61
62       W       (output) DOUBLE PRECISION array, dimension (N)
63               If INFO = 0, the eigenvalues in ascending order.
64
65       Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
66               If  JOBZ  =  'V',  then if INFO = 0, Z contains the matrix Z of
67               eigenvectors.  The eigenvectors are normalized as  follows:  if
68               ITYPE  = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I.
69               If JOBZ = 'N', then Z is not referenced.
70
71       LDZ     (input) INTEGER
72               The leading dimension of the array Z.  LDZ >= 1, and if JOBZ  =
73               'V', LDZ >= max(1,N).
74
75       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
76
77       INFO    (output) INTEGER
78               = 0:  successful exit
79               < 0:  if INFO = -i, the i-th argument had an illegal value
80               > 0:  DPPTRF or DSPEV returned an error code:
81               <=  N:   if  INFO = i, DSPEV failed to converge; i off-diagonal
82               elements of an intermediate tridiagonal form did  not  converge
83               to  zero.   >  N:    if INFO = n + i, for 1 <= i <= n, then the
84               leading minor of order i of B is not  positive  definite.   The
85               factorization of B could not be completed and no eigenvalues or
86               eigenvectors were computed.
87
88
89
90 LAPACK driver routine (version 3.N2o)vember 2008                        DSPGV(1)
Impressum