1DSPGV(1)              LAPACK driver routine (version 3.1)             DSPGV(1)
2
3
4

NAME

6       DSPGV - all the eigenvalues and, optionally, the eigenvectors of a real
7       generalized    symmetric-definite    eigenproblem,    of    the    form
8       A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
9

SYNOPSIS

11       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )
12
13           CHARACTER     JOBZ, UPLO
14
15           INTEGER       INFO, ITYPE, LDZ, N
16
17           DOUBLE        PRECISION  AP(  *  ),  BP( * ), W( * ), WORK( * ), Z(
18                         LDZ, * )
19

PURPOSE

21       DSPGV computes all the eigenvalues and, optionally, the eigenvectors of
22       a   real  generalized  symmetric-definite  eigenproblem,  of  the  form
23       A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and B
24       are  assumed  to  be  symmetric, stored in packed format, and B is also
25       positive definite.
26
27

ARGUMENTS

29       ITYPE   (input) INTEGER
30               Specifies the problem type to be solved:
31               = 1:  A*x = (lambda)*B*x
32               = 2:  A*B*x = (lambda)*x
33               = 3:  B*A*x = (lambda)*x
34
35       JOBZ    (input) CHARACTER*1
36               = 'N':  Compute eigenvalues only;
37               = 'V':  Compute eigenvalues and eigenvectors.
38
39       UPLO    (input) CHARACTER*1
40               = 'U':  Upper triangles of A and B are stored;
41               = 'L':  Lower triangles of A and B are stored.
42
43       N       (input) INTEGER
44               The order of the matrices A and B.  N >= 0.
45
46       AP      (input/output) DOUBLE PRECISION array, dimension
47               (N*(N+1)/2) On entry, the upper or lower triangle of  the  sym‐
48               metric matrix A, packed columnwise in a linear array.  The j-th
49               column of A is stored in the array AP as  follows:  if  UPLO  =
50               'U',  AP(i  +  (j-1)*j/2)  = A(i,j) for 1<=i<=j; if UPLO = 'L',
51               AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
52
53               On exit, the contents of AP are destroyed.
54
55       BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
56               On entry, the upper or lower triangle of the  symmetric  matrix
57               B,  packed  columnwise in a linear array.  The j-th column of B
58               is stored in the array BP as follows: if UPLO  =  'U',  BP(i  +
59               (j-1)*j/2)  =  B(i,j)  for  1<=i<=j;  if  UPLO  =  'L',  BP(i +
60               (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
61
62               On exit, the triangular factor U or L from the Cholesky factor‐
63               ization B = U**T*U or B = L*L**T, in the same storage format as
64               B.
65
66       W       (output) DOUBLE PRECISION array, dimension (N)
67               If INFO = 0, the eigenvalues in ascending order.
68
69       Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
70               If JOBZ = 'V', then if INFO = 0, Z contains  the  matrix  Z  of
71               eigenvectors.   The  eigenvectors are normalized as follows: if
72               ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z =  I.
73               If JOBZ = 'N', then Z is not referenced.
74
75       LDZ     (input) INTEGER
76               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
77               'V', LDZ >= max(1,N).
78
79       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
80
81       INFO    (output) INTEGER
82               = 0:  successful exit
83               < 0:  if INFO = -i, the i-th argument had an illegal value
84               > 0:  DPPTRF or DSPEV returned an error code:
85               <= N:  if INFO = i, DSPEV failed to  converge;  i  off-diagonal
86               elements  of  an intermediate tridiagonal form did not converge
87               to zero.  > N:   if INFO = n + i, for 1 <= i  <=  n,  then  the
88               leading  minor  of  order i of B is not positive definite.  The
89               factorization of B could not be completed and no eigenvalues or
90               eigenvectors were computed.
91
92
93
94 LAPACK driver routine (version 3.N1o)vember 2006                        DSPGV(1)
Impressum