1DSTEVX(1)             LAPACK driver routine (version 3.2)            DSTEVX(1)
2
3
4

NAME

6       DSTEVX - computes selected eigenvalues and, optionally, eigenvectors of
7       a real symmetric tridiagonal matrix A
8

SYNOPSIS

10       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,  W,
11                          Z, LDZ, WORK, IWORK, IFAIL, INFO )
12
13           CHARACTER      JOBZ, RANGE
14
15           INTEGER        IL, INFO, IU, LDZ, M, N
16
17           DOUBLE         PRECISION ABSTOL, VL, VU
18
19           INTEGER        IFAIL( * ), IWORK( * )
20
21           DOUBLE         PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ,
22                          * )
23

PURPOSE

25       DSTEVX computes selected eigenvalues and, optionally, eigenvectors of a
26       real  symmetric tridiagonal matrix A.  Eigenvalues and eigenvectors can
27       be selected by specifying either a  range  of  values  or  a  range  of
28       indices for the desired eigenvalues.
29

ARGUMENTS

31       JOBZ    (input) CHARACTER*1
32               = 'N':  Compute eigenvalues only;
33               = 'V':  Compute eigenvalues and eigenvectors.
34
35       RANGE   (input) CHARACTER*1
36               = 'A': all eigenvalues will be found.
37               =  'V':  all eigenvalues in the half-open interval (VL,VU] will
38               be found.  = 'I': the IL-th through IU-th eigenvalues  will  be
39               found.
40
41       N       (input) INTEGER
42               The order of the matrix.  N >= 0.
43
44       D       (input/output) DOUBLE PRECISION array, dimension (N)
45               On  entry, the n diagonal elements of the tridiagonal matrix A.
46               On exit, D may be multiplied by a  constant  factor  chosen  to
47               avoid over/underflow in computing the eigenvalues.
48
49       E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
50               On  entry,  the  (n-1)  subdiagonal elements of the tridiagonal
51               matrix A in elements 1 to N-1 of E.  On exit, E may  be  multi‐
52               plied  by  a  constant factor chosen to avoid over/underflow in
53               computing the eigenvalues.
54
55       VL      (input) DOUBLE PRECISION
56               VU      (input) DOUBLE PRECISION If RANGE='V',  the  lower  and
57               upper bounds of the interval to be searched for eigenvalues. VL
58               < VU.  Not referenced if RANGE = 'A' or 'I'.
59
60       IL      (input) INTEGER
61               IU      (input) INTEGER If RANGE='I', the indices (in ascending
62               order)  of the smallest and largest eigenvalues to be returned.
63               1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   Not
64               referenced if RANGE = 'A' or 'V'.
65
66       ABSTOL  (input) DOUBLE PRECISION
67               The  absolute error tolerance for the eigenvalues.  An approxi‐
68               mate eigenvalue is accepted as converged when it is  determined
69               to  lie  in  an  interval  [a,b] of width less than or equal to
70               ABSTOL + EPS *   max( |a|,|b| ) , where EPS is the machine pre‐
71               cision.  If ABSTOL is less than or equal to zero, then  EPS*|T|
72               will be used in its place, where  |T|  is  the  1-norm  of  the
73               tridiagonal  matrix.   Eigenvalues  will be computed most accu‐
74               rately when ABSTOL is set  to  twice  the  underflow  threshold
75               2*DLAMCH('S'),  not zero.  If this routine returns with INFO>0,
76               indicating that some eigenvectors did not converge, try setting
77               ABSTOL  to 2*DLAMCH('S').  See "Computing Small Singular Values
78               of Bidiagonal Matrices with Guaranteed High Relative Accuracy,"
79               by Demmel and Kahan, LAPACK Working Note #3.
80
81       M       (output) INTEGER
82               The  total number of eigenvalues found.  0 <= M <= N.  If RANGE
83               = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
84
85       W       (output) DOUBLE PRECISION array, dimension (N)
86               The first  M  elements  contain  the  selected  eigenvalues  in
87               ascending order.
88
89       Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
90               If  JOBZ = 'V', then if INFO = 0, the first M columns of Z con‐
91               tain the orthonormal eigenvectors of the matrix A corresponding
92               to  the selected eigenvalues, with the i-th column of Z holding
93               the eigenvector associated with W(i).  If an eigenvector  fails
94               to converge (INFO > 0), then that column of Z contains the lat‐
95               est approximation to the eigenvector,  and  the  index  of  the
96               eigenvector is returned in IFAIL.  If JOBZ = 'N', then Z is not
97               referenced.  Note: the user must ensure that at least  max(1,M)
98               columns  are supplied in the array Z; if RANGE = 'V', the exact
99               value of M is not known in advance and an upper bound  must  be
100               used.
101
102       LDZ     (input) INTEGER
103               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
104               'V', LDZ >= max(1,N).
105
106       WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
107
108       IWORK   (workspace) INTEGER array, dimension (5*N)
109
110       IFAIL   (output) INTEGER array, dimension (N)
111               If JOBZ = 'V', then if INFO = 0, the first M elements of  IFAIL
112               are  zero.  If INFO > 0, then IFAIL contains the indices of the
113               eigenvectors that failed to converge.   If  JOBZ  =  'N',  then
114               IFAIL is not referenced.
115
116       INFO    (output) INTEGER
117               = 0:  successful exit
118               < 0:  if INFO = -i, the i-th argument had an illegal value
119               >  0:   if  INFO  =  i, then i eigenvectors failed to converge.
120               Their indices are stored in array IFAIL.
121
122
123
124 LAPACK driver routine (version 3.N2o)vember 2008                       DSTEVX(1)
Impressum