1DSTEVX(1)             LAPACK driver routine (version 3.1)            DSTEVX(1)
2
3
4

NAME

6       DSTEVX  -  selected eigenvalues and, optionally, eigenvectors of a real
7       symmetric tridiagonal matrix A
8

SYNOPSIS

10       SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,  W,
11                          Z, LDZ, WORK, IWORK, IFAIL, INFO )
12
13           CHARACTER      JOBZ, RANGE
14
15           INTEGER        IL, INFO, IU, LDZ, M, N
16
17           DOUBLE         PRECISION ABSTOL, VL, VU
18
19           INTEGER        IFAIL( * ), IWORK( * )
20
21           DOUBLE         PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ,
22                          * )
23

PURPOSE

25       DSTEVX computes selected eigenvalues and, optionally, eigenvectors of a
26       real  symmetric tridiagonal matrix A.  Eigenvalues and eigenvectors can
27       be selected by specifying either a  range  of  values  or  a  range  of
28       indices for the desired eigenvalues.
29
30

ARGUMENTS

32       JOBZ    (input) CHARACTER*1
33               = 'N':  Compute eigenvalues only;
34               = 'V':  Compute eigenvalues and eigenvectors.
35
36       RANGE   (input) CHARACTER*1
37               = 'A': all eigenvalues will be found.
38               =  'V':  all eigenvalues in the half-open interval (VL,VU] will
39               be found.  = 'I': the IL-th through IU-th eigenvalues  will  be
40               found.
41
42       N       (input) INTEGER
43               The order of the matrix.  N >= 0.
44
45       D       (input/output) DOUBLE PRECISION array, dimension (N)
46               On  entry, the n diagonal elements of the tridiagonal matrix A.
47               On exit, D may be multiplied by a  constant  factor  chosen  to
48               avoid over/underflow in computing the eigenvalues.
49
50       E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
51               On  entry,  the  (n-1)  subdiagonal elements of the tridiagonal
52               matrix A in elements 1 to N-1 of E.  On exit, E may  be  multi‐
53               plied  by  a  constant factor chosen to avoid over/underflow in
54               computing the eigenvalues.
55
56       VL      (input) DOUBLE PRECISION
57               VU      (input) DOUBLE PRECISION If RANGE='V',  the  lower  and
58               upper bounds of the interval to be searched for eigenvalues. VL
59               < VU.  Not referenced if RANGE = 'A' or 'I'.
60
61       IL      (input) INTEGER
62               IU      (input) INTEGER If RANGE='I', the indices (in ascending
63               order)  of the smallest and largest eigenvalues to be returned.
64               1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   Not
65               referenced if RANGE = 'A' or 'V'.
66
67       ABSTOL  (input) DOUBLE PRECISION
68               The  absolute error tolerance for the eigenvalues.  An approxi‐
69               mate eigenvalue is accepted as converged when it is  determined
70               to lie in an interval [a,b] of width less than or equal to
71
72               ABSTOL + EPS *   max( |a|,|b| ) ,
73
74               where  EPS is the machine precision.  If ABSTOL is less than or
75               equal to zero, then  EPS*|T|  will be used in its place,  where
76               |T| is the 1-norm of the tridiagonal matrix.
77
78               Eigenvalues will be computed most accurately when ABSTOL is set
79               to twice the underflow threshold 2*DLAMCH('S'), not  zero.   If
80               this  routine  returns with INFO>0, indicating that some eigen‐
81               vectors did not converge, try setting ABSTOL to 2*DLAMCH('S').
82
83               See "Computing Small Singular  Values  of  Bidiagonal  Matrices
84               with  Guaranteed  High Relative Accuracy," by Demmel and Kahan,
85               LAPACK Working Note #3.
86
87       M       (output) INTEGER
88               The total number of eigenvalues found.  0 <= M <= N.  If  RANGE
89               = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
90
91       W       (output) DOUBLE PRECISION array, dimension (N)
92               The  first  M  elements  contain  the  selected  eigenvalues in
93               ascending order.
94
95       Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
96               If JOBZ = 'V', then if INFO = 0, the first M columns of Z  con‐
97               tain the orthonormal eigenvectors of the matrix A corresponding
98               to the selected eigenvalues, with the i-th column of Z  holding
99               the  eigenvector associated with W(i).  If an eigenvector fails
100               to converge (INFO > 0), then that column of Z contains the lat‐
101               est  approximation  to  the  eigenvector,  and the index of the
102               eigenvector is returned in IFAIL.  If JOBZ = 'N', then Z is not
103               referenced.   Note: the user must ensure that at least max(1,M)
104               columns are supplied in the array Z; if RANGE = 'V', the  exact
105               value  of  M is not known in advance and an upper bound must be
106               used.
107
108       LDZ     (input) INTEGER
109               The leading dimension of the array Z.  LDZ >= 1, and if JOBZ  =
110               'V', LDZ >= max(1,N).
111
112       WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
113
114       IWORK   (workspace) INTEGER array, dimension (5*N)
115
116       IFAIL   (output) INTEGER array, dimension (N)
117               If  JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
118               are zero.  If INFO > 0, then IFAIL contains the indices of  the
119               eigenvectors  that  failed  to  converge.   If JOBZ = 'N', then
120               IFAIL is not referenced.
121
122       INFO    (output) INTEGER
123               = 0:  successful exit
124               < 0:  if INFO = -i, the i-th argument had an illegal value
125               > 0:  if INFO = i, then  i  eigenvectors  failed  to  converge.
126               Their indices are stored in array IFAIL.
127
128
129
130 LAPACK driver routine (version 3.N1o)vember 2006                       DSTEVX(1)
Impressum