1SGEEV(1)              LAPACK driver routine (version 3.2)             SGEEV(1)
2
3
4

NAME

6       SGEEV  -  computes for an N-by-N real nonsymmetric matrix A, the eigen‐
7       values and, optionally, the left and/or right eigenvectors
8

SYNOPSIS

10       SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,  LDVR,
11                         WORK, LWORK, INFO )
12
13           CHARACTER     JOBVL, JOBVR
14
15           INTEGER       INFO, LDA, LDVL, LDVR, LWORK, N
16
17           REAL          A(  LDA,  * ), VL( LDVL, * ), VR( LDVR, * ), WI( * ),
18                         WORK( * ), WR( * )
19

PURPOSE

21       SGEEV computes for an N-by-N real nonsymmetric matrix A, the  eigenval‐
22       ues  and,  optionally,  the  left and/or right eigenvectors.  The right
23       eigenvector v(j) of A satisfies
24                        A * v(j) = lambda(j) * v(j)
25       where lambda(j) is its eigenvalue.
26       The left eigenvector u(j) of A satisfies
27                     u(j)**H * A = lambda(j) * u(j)**H
28       where u(j)**H denotes the conjugate transpose of u(j).
29       The computed eigenvectors are normalized to have Euclidean  norm  equal
30       to 1 and largest component real.
31

ARGUMENTS

33       JOBVL   (input) CHARACTER*1
34               = 'N': left eigenvectors of A are not computed;
35               = 'V': left eigenvectors of A are computed.
36
37       JOBVR   (input) CHARACTER*1
38               = 'N': right eigenvectors of A are not computed;
39               = 'V': right eigenvectors of A are computed.
40
41       N       (input) INTEGER
42               The order of the matrix A. N >= 0.
43
44       A       (input/output) REAL array, dimension (LDA,N)
45               On  entry,  the N-by-N matrix A.  On exit, A has been overwrit‐
46               ten.
47
48       LDA     (input) INTEGER
49               The leading dimension of the array A.  LDA >= max(1,N).
50
51       WR      (output) REAL array, dimension (N)
52               WI      (output) REAL array, dimension (N) WR  and  WI  contain
53               the real and imaginary parts, respectively, of the computed ei‐
54               genvalues.  Complex conjugate pairs of eigenvalues appear  con‐
55               secutively  with  the  eigenvalue having the positive imaginary
56               part first.
57
58       VL      (output) REAL array, dimension (LDVL,N)
59               If JOBVL = 'V', the left eigenvectors u(j) are stored one after
60               another in the columns of VL, in the same order as their eigen‐
61               values.  If JOBVL = 'N', VL is not referenced.  If the j-th ei‐
62               genvalue  is  real, then u(j) = VL(:,j), the j-th column of VL.
63               If the j-th and (j+1)-st eigenvalues form a  complex  conjugate
64               pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
65               u(j+1) = VL(:,j) - i*VL(:,j+1).
66
67       LDVL    (input) INTEGER
68               The  leading  dimension of the array VL.  LDVL >= 1; if JOBVL =
69               'V', LDVL >= N.
70
71       VR      (output) REAL array, dimension (LDVR,N)
72               If JOBVR = 'V', the right  eigenvectors  v(j)  are  stored  one
73               after  another in the columns of VR, in the same order as their
74               eigenvalues.  If JOBVR = 'N', VR is not referenced.  If the  j-
75               th  eigenvalue is real, then v(j) = VR(:,j), the j-th column of
76               VR.  If the j-th and (j+1)-st eigenvalues form a complex conju‐
77               gate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
78               v(j+1) = VR(:,j) - i*VR(:,j+1).
79
80       LDVR    (input) INTEGER
81               The  leading  dimension of the array VR.  LDVR >= 1; if JOBVR =
82               'V', LDVR >= N.
83
84       WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
85               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
86
87       LWORK   (input) INTEGER
88               The dimension of the array WORK.  LWORK >= max(1,3*N),  and  if
89               JOBVL  =  'V'  or  JOBVR = 'V', LWORK >= 4*N.  For good perfor‐
90               mance, LWORK must generally be larger.  If LWORK = -1,  then  a
91               workspace  query  is  assumed;  the routine only calculates the
92               optimal size of the WORK array, returns this value as the first
93               entry  of the WORK array, and no error message related to LWORK
94               is issued by XERBLA.
95
96       INFO    (output) INTEGER
97               = 0:  successful exit
98               < 0:  if INFO = -i, the i-th argument had an illegal value.
99               > 0:  if INFO = i, the QR algorithm failed to compute  all  the
100               eigenvalues,  and  no eigenvectors have been computed; elements
101               i+1:N of WR and WI contain eigenvalues which have converged.
102
103
104
105 LAPACK driver routine (version 3.N2o)vember 2008                        SGEEV(1)
Impressum