1SGEEV(1)              LAPACK driver routine (version 3.1)             SGEEV(1)
2
3
4

NAME

6       SGEEV  - for an N-by-N real nonsymmetric matrix A, the eigenvalues and,
7       optionally, the left and/or right eigenvectors
8

SYNOPSIS

10       SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,  LDVR,
11                         WORK, LWORK, INFO )
12
13           CHARACTER     JOBVL, JOBVR
14
15           INTEGER       INFO, LDA, LDVL, LDVR, LWORK, N
16
17           REAL          A(  LDA,  * ), VL( LDVL, * ), VR( LDVR, * ), WI( * ),
18                         WORK( * ), WR( * )
19

PURPOSE

21       SGEEV computes for an N-by-N real nonsymmetric matrix A, the  eigenval‐
22       ues and, optionally, the left and/or right eigenvectors.
23
24       The right eigenvector v(j) of A satisfies
25                        A * v(j) = lambda(j) * v(j)
26       where lambda(j) is its eigenvalue.
27       The left eigenvector u(j) of A satisfies
28                     u(j)**H * A = lambda(j) * u(j)**H
29       where u(j)**H denotes the conjugate transpose of u(j).
30
31       The  computed  eigenvectors are normalized to have Euclidean norm equal
32       to 1 and largest component real.
33
34

ARGUMENTS

36       JOBVL   (input) CHARACTER*1
37               = 'N': left eigenvectors of A are not computed;
38               = 'V': left eigenvectors of A are computed.
39
40       JOBVR   (input) CHARACTER*1
41               = 'N': right eigenvectors of A are not computed;
42               = 'V': right eigenvectors of A are computed.
43
44       N       (input) INTEGER
45               The order of the matrix A. N >= 0.
46
47       A       (input/output) REAL array, dimension (LDA,N)
48               On entry, the N-by-N matrix A.  On exit, A has  been  overwrit‐
49               ten.
50
51       LDA     (input) INTEGER
52               The leading dimension of the array A.  LDA >= max(1,N).
53
54       WR      (output) REAL array, dimension (N)
55               WI       (output)  REAL  array, dimension (N) WR and WI contain
56               the real and imaginary parts, respectively, of the computed ei‐
57               genvalues.   Complex conjugate pairs of eigenvalues appear con‐
58               secutively with the eigenvalue having  the  positive  imaginary
59               part first.
60
61       VL      (output) REAL array, dimension (LDVL,N)
62               If JOBVL = 'V', the left eigenvectors u(j) are stored one after
63               another in the columns of VL, in the same order as their eigen‐
64               values.  If JOBVL = 'N', VL is not referenced.  If the j-th ei‐
65               genvalue is real, then u(j) = VL(:,j), the j-th column  of  VL.
66               If  the  j-th and (j+1)-st eigenvalues form a complex conjugate
67               pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
68               u(j+1) = VL(:,j) - i*VL(:,j+1).
69
70       LDVL    (input) INTEGER
71               The leading dimension of the array VL.  LDVL >= 1; if  JOBVL  =
72               'V', LDVL >= N.
73
74       VR      (output) REAL array, dimension (LDVR,N)
75               If  JOBVR  =  'V',  the  right eigenvectors v(j) are stored one
76               after another in the columns of VR, in the same order as  their
77               eigenvalues.   If JOBVR = 'N', VR is not referenced.  If the j-
78               th eigenvalue is real, then v(j) = VR(:,j), the j-th column  of
79               VR.  If the j-th and (j+1)-st eigenvalues form a complex conju‐
80               gate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
81               v(j+1) = VR(:,j) - i*VR(:,j+1).
82
83       LDVR    (input) INTEGER
84               The leading dimension of the array VR.  LDVR >= 1; if  JOBVR  =
85               'V', LDVR >= N.
86
87       WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
88               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
89
90       LWORK   (input) INTEGER
91               The  dimension  of the array WORK.  LWORK >= max(1,3*N), and if
92               JOBVL = 'V' or JOBVR = 'V', LWORK >=  4*N.   For  good  perfor‐
93               mance, LWORK must generally be larger.
94
95               If  LWORK  = -1, then a workspace query is assumed; the routine
96               only calculates the optimal size of  the  WORK  array,  returns
97               this  value  as the first entry of the WORK array, and no error
98               message related to LWORK is issued by XERBLA.
99
100       INFO    (output) INTEGER
101               = 0:  successful exit
102               < 0:  if INFO = -i, the i-th argument had an illegal value.
103               > 0:  if INFO = i, the QR algorithm failed to compute  all  the
104               eigenvalues,  and  no eigenvectors have been computed; elements
105               i+1:N of WR and WI contain eigenvalues which have converged.
106
107
108
109 LAPACK driver routine (version 3.N1o)vember 2006                        SGEEV(1)
Impressum